Tunnell's theorem

In number theory, Tunnell's theorem gives a partial resolution to the congruent number problem, and under the Birch and Swinnerton-Dyer conjecture, a full resolution.

Congruent number problem

The congruent number problem asks which positive integers can be the area of a right triangle with all three sides rational. Tunnell's theorem relates this to the number of integral solutions of a few fairly simple Diophantine equations.

Theorem

For a given square-free integer n, define

\begin{matrix}
A_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 2x^2 + y^2 + 32z^2 \} \\
B_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 2x^2 + y^2 + 8z^2 \} \quad \\
C_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 8x^2 + 2y^2 + 64z^2 \} \\
D_n & = & \#\{ (x,y,z) \in \mathbb{Z}^3 | n = 8x^2 + 2y^2 + 16z^2 \}.
\end{matrix}

Tunnell's theorem states that supposing n is a congruent number, if n is odd then 2An = Bn and if n is even then 2Cn = Dn. Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for elliptic curves of the form y^2 = x^3 - n^2x, these equalities are sufficient to conclude that n is a congruent number.

History

The theorem is named for Jerrold B. Tunnell, a number theorist at Rutgers University, who proved it in 1983.

Importance

The importance of Tunnell's theorem is that the criterion it gives is testable by a finite calculation. For instance, for a given n, the numbers An,Bn,Cn,Dn can be calculated by exhaustively searching through x,y,z in the range -\sqrt{n},\ldots,\sqrt{n}.

References

This article is issued from Wikipedia - version of the Tuesday, August 04, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.