Two Medicine Formation

Two Medicine Formation
Stratigraphic range: Campanian, 83.5–74.9 Ma

Exposure of the Two Medicine Formation near "Egg Mountain" in northern Montana.
Type Geological formation
Underlies Bearpaw Shale
Overlies Virgelle Sandstone
Lithology
Primary Sandstone
Location
Coordinates 48°04′27″N 112°17′58″W / 48.07417°N 112.29944°W / 48.07417; -112.29944 (Two Medicine)
Approximate paleocoordinates 55°18′N 77°48′W / 55.3°N 77.8°W / 55.3; -77.8 (Two Medicine)
Region Montana, Alberta
Country U. S. A., Canada

The Two Medicine Formation is a geologic formation, or rock body, that was deposited between 83.5 ± 0.7 Ma to 70.6 ± 3.4 Ma (million years ago), during Campanian (Late Cretaceous) time, and is located in northwestern Montana and southern Alberta. It crops out to the east of the Rocky Mountain Overthrust Belt, and the western portion (about 600 m thick) of this formation is folded and faulted while the eastern part, which thins out into the Sweetgrass Arch, is mostly undeformed plains. Below the Two Medicine Fm. are the nearshore (beach and tidal zone) deposits of the Virgelle Sandstone, and above it is the marine Bearpaw Shale. Throughout the Campanian, the Two Medicine Fm. was deposited between the western shoreline of the Late Cretaceous Interior Seaway and the eastward advancing margin of the Cordilleran Overthrust Belt. The Two Medicine Fm. is mostly sandstone, deposited by rivers and deltas.

History of research

In 1913, a US Geological Survey crew headed by Eugene Stebinger and a US National Museum crew headed by Charles Gilmore worked together to excavate the first dinosaur of the formation.[1] Stebinger was the first to identify the Two Medicine Formation and formally described the first fossils in a scientific paper published in 1914.[1] Gilmore returned to the Formation in 1928 and 1935.[1] During this time frame only three species were named and of these only Styracosaurus ovatus and Edmontonia rugosidens are still regarded as valid.[1] Barnum Brown prospected the formation in 1933, but found nothing significant.[1] Both of their research were interrupted by World War II.[1] In 1977 Trexler reports finding hadrosaur remains west of Choteau, Montana.[1] During the next year baby hadrosaurs were discovered.[1] In 1979 Horner and Makela referred these hadrosaur bones to Maiasaura peeblesorum.[1] The announcement attracted renewed scientific interest to the formation and many new kinds of dinosaurs were discovered.[2] More nesting sites were discovered later, including the Devil's Coulee site yielding Hypacrosaurus stebingeri in southern Alberta in 1987.

Geology

The loosely consolidated fine grain sediments composing the formation allow for fast plant growth in badland areas, limiting the number of exposed outcrops.[3] Paleosols, fluvial deposits and bentonitic layers are common in the Two Medicine Formation.[4]

Age

The Two Medicine Formation spans from 74 to 80 ma, nearly the entire length of the Campanian stage.[5] The formation has been dated using 40Ar/39Ar dating at volcanic ash layers located 10 m below the top and 105 meters above the base.[5] The deposition of the formation may be diachronous.[6] The Lower Two Medicine dates to late Santonian - early Campanian times. The Upper Two Medicine dates to middle-late Campanian times.

Equivalents

There are several equivalents to the Two Medicine Formation, as with many geologic formations (most of which are named after their type locality). The Sweetgrass Arch in Montana divides the Two Medicine from the Judith River Formation, Bearpaw Shale, Claggett Shale, and Eagle Sandstone. Across the Canadian border, the Two Medicine Formation correlates to the Belly River Group in southwest Alberta, and the Pakowki Formation eastward.

Stratigraphy

The Two Medicine overlies the Virgelle Sandstone, which formed from the beach sands exposed on northern and western shores of the receding Colorado Sea.[7] A Cretaceous Interior Seaway transgression submerged the area briefly early on in Two Medicine history leaving anomalous paralic sediments and isolated shale bodies about 100 m above the base of the formation.[8] The Middle portion of the two medicine formation is about 225 m thick, deposited while the Clagette Sea was receding and the Bearpaw Sea transgressing.[8] This portion is stratigraphically equivalent to the Judith River Formation and Judith River Group.[8] The sediments are mainly bentonitic siltstones and mudstones with "occasional sandstone lenses."[8] These sediments are though to be the remains of a coastal plain "far removed" from the interior sea.[8] The upper portion is about one half of the formation.[9] Its sediments are similar to the middle portions but punctuated by extensive red beds and caliche horizons.[9] The uppermost 80 m were deposited after the inundation of the Judith River equivalent sediments by the Bearpaw Sea.[9] They are thought to have been deposited in only 500,000 years.[9] Bentonitic ash is common in the Two Medicine.[9] To the south extrusive volcanic activity occurred in association with the Boulder Batholith collectively called the Elkhorn Volcanics.[9]

Taphonomy

Most of the vertebrate fossils are preserved by CaCo3 permineralization.[3] This type of preservation preserves high levels of detail, even down to the microscopic level.[3] However, it also leaves specimens vulnerable to weathering when exposed to the surface.[3]

Paleoenvironment

Climate

Reconstruction image of a herd of Maiasaurs walking along a creek-bed in Two Medicine Formation. Shown are the region's typical conifer, fern and horsetail vegetation, and a volcano erupting in the distance is evocative of the ash layers found in the Two Medicine Formation.

The Two Medicine Formation was deposited in a seasonal, semi-arid climate with possible rainshadows from the Cordilleran highlands. This region during the Campanian experienced a long dry season and warm temperatures. Lithologies, invertebrate faunas, and plant and pollen data support the above interpretation. The extensive red beds and caliche horizons of the upper Two Medicine are evidence of at least seasonally arid conditions.[9] Some of the dinosaurs from the formation have been speculated to have shown signs of drought related death.[9]

Elevation

A more upland environment existed in the south of the Two Medicine formation.[8] Paleostreams had a northeasterly flow away from these southwestern uplands.[8] The southern part of the Two medicine formation grades into brackish water silstone/sandstone series called the Horsethief Formation.[9] The sediments of the Horsethief represent shallower water deposits than the Bearpaw Shale adding further evidence of higher elevation areas existing in the south.[9]

Egg Mountain site

Illustration of life of the Egg Mountain.

Egg Mountain was discovered in 1977 by Marion Brandvold, owner of the Trex Agate Rock Shop in Bynum, Montana, who discovered the bones of juvenile dinosaurs at this site. It is a colonial nesting site on the Willow Creek Anticline in the Two Medicine Formation that is famous for its fossil eggs of Maiasaura, which demonstrated for the first time that at least some dinosaurs cared for their young. The eggs were arranged in dug-out earthen nests, each nest about a parent's body length from the next, and baby dinosaurs were also found with skeletons too cartilaginous for them to walk - similar to those of altricial (helpless) baby birds. The parent(s) must then have brought food to the young, and there is plant matter in the nests that may be evidence of either this or for incubation of the eggs. Maiasaura also grew extremely fast, at rates comparable to modern birds. Skeletons of Orodromeus and skeletons and eggs of Troodon were also found at Egg Mountain.

Biostratigraphy

Most dinosaur-bearing rock formations do not contain multiple distinct faunas at different positions within the formation's stratigraphic column.[10] Usually the lower sediments of a given formation will contain the same kinds of dinosaurs as the upper sediments, or the species composition changes only gradually.[10] However, some researchers had argued that the Two Medicine Formation was an exception, preserving multiple distinct dinosaur faunas.[10]

Later research came to find that the supposedly distinct dinosaur faunas at different levels of the formations were more similar than had been previously thought.[11] While the dinosaur fauna of the lower and middle sections Two Medicine was apparently diverse, the quality of preservation was low and few of these remains can be referred to individual species.[6] The middle Two Medicine is a better source of fossils, but still poor overall. This makes it difficult to argue that these sections of the formation preserve distinct faunas.[11]

The upper portion of the formation is more diverse and preserves better quality fossils.[12] However, many of the taxa that supposedly distinguished it as a separate fauna have since been found in older sediments. In particular, Gryposaurus latidens and Hypacrosaurus have been found to coexist with Maiasaura.[11] Further, there are fossil teeth that seem to show the presence of certain taxa are unbroken throughout the whole formation.[11]

Nevertheless, some true changes in faunal composition seems to occur in the upper Two Medicine. The appearance of Maiasaura in the formation precedes the arrival of a diverse variety of other ornithischians.[11] According to David Trexler, thorough examination of strata found along the Two Medicine River (which exposes the entire upper half of the Two Medicine Formation) indicates that the apparent diversification was a real event rather than a result of preservational biases.[11]

The timeline below follows the stratigraphic chart presented by Horner et al. 2001.[13]

Bearpaw Formation Achelousaurus horneri Einiosaurus procurvicornis Rubeosaurus ovatus Scolosaurus cutleri Prosaurolophus maximus Hypacrosaurus stebingeri Bambiraptor feinbergorum Troodon formosus Orodromeus makelai Maiasaura peeblesorum Acristavus gagslarsoni Saurornitholestes Richardoestesia Dromaeosaurus Gryposaurus latidens

Dinosaurs

Some of the dinosaurs from the formation have been speculated to show signs of drought related death.[9] Very few articulated dinosaurs have been found in the formation; most specimens are isolated, bone bed, poorly preserved or broken remains.[14] Early studies assumed that the Two Medicine Formation would have the same dinosaurs as the Judith River Formation.[14] It was only in 1978, that it was discovered that the formation had endemic dinosaurs.[14] Even some genera regarded as wide ranging predators exhibited a species difference between the Two Medicine and other formations.[15] No ecological barriers have been postulated apart from upland/lowland habitat preference differences between the Two Medicine and Judith River Formation.[12] There is no unequivocal evidence for intermingling between the wildlife of the Two Medicine and geographically adjacent contemporary formations.[12] Dinosaur remains are more common in the upper part of the Two Medicine.[12]

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Ankylosaurs

Ankylosaurs reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Edmontonia[16]

E. rugosidens[16]

  • Landslide Butte
  • Two Medicine River

A nodosaurid.

Euoplocephalus[16]

E. tutus[16]

Misclassified, actually represent Scolosaurus.

Indeterminate

  • Landslide Butte
  • Two Medicine River
  • Upper

Misclassified, probably Scolosaurus.

Oohkotokia[17]

O. horneri[17]

Penkalski (2013) referred to Oohkotokia all ankylosaurine specimens from this formation.[17] Arbour and Currie (2013) later referred Oohkotokia to Scolosaurus.

Scolosaurus[18]

S. cutleri[18]

An ankylosaurine ankylosaurid. These remains were previously considered to represent Euoplocephalus and then referred to Oohkotokia before being placed in Scolosaurus.

Avialans

Avialans reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes

Avisaurus[16]

A. gloriae[16]

"Tarsometatarsus."[19]

Ceratopsians

Ceratopsians reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Achelousaurus[16]

A. horneri[16]

  • Landslide Butte

"[Three] partial skulls, [one] partial skeleton."[20]

A centrosaurine ceratopsid.

Brachyceratops[16]

B. montanensis[16]

"[Six] partial skulls, skeletons, subadult."[20]

A centrosaurine ceratopsid. Might be a juvenile Rubeosaurus.

Cerasinops

C. hodgskissi

  • Upper
  • Lower

A leptoceratopsid.

Einiosaurus[16]

E. procurvicornis[16]

  • Landslide Butte

"[Three] adult skulls, juvenile and subadult cranial and postcranial elements."[20]

A centrosaurine ceratopsid.

Prenoceratops

P. pieganensis

  • Upper

A leptoceratopsid.

Rubeosaurus[16]

R. ovatus[16]

  • Landslide Butte

"Fragmentary parietal frill."[21]

A centrosaurine ceratopsid.

Deinonychosaurs

Deinonychosaurs reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Bambiraptor[16]

B. feinbergorum[16]

"Almost complete skull and postcrania,"[22] type specimen

A saurornitholestine dromaeosaur.

Dromaeosaurus[23]

Indeterminate[23]

Ricardoestesia[16]

Indeterminate[16]

Teeth

Saurornitholestes[24]

S. langstoni[25]

  • "Choteau/Bynum"
  • Landslide Butte
  • Two Medicine River

Partial skeleton, isolated pedal elements

A saurornitholestine dromaeosaur.

Troodon[24]

T. formosus[16]

A troodontine troodontid, also found in the Dinosaur Park, Judith River, and Oldman

Indeterminate[23]

  • "Choteau/Bynum"
  • Landslide Butte
  • Two Medicine River
  • Upper
  • Middle
  • Lower[23]

Ornithopods

An unidentified lambeosaurine has been collected from the same stratigraphic placement, west of Bynum, and is in preparation for the Timescale Adventures collection.[26]

Ornithopods reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Acristavus[27]

A. gagslarsoni

Lower

A saurolophine hadrosaur.

Glishades

G. ericksoni

A hadrosauroid[28] or an indeterminate juvenile saurolophine hadrosaur.[29]

Gryposaurus[24]

G. latidens[23]

  • Two Medicine River

"Several partial skulls and postcranial skeletons."[30] Also known from isolated teeth which may have been redeposited fossils, although this explanation is unlikely.[12]

A saurolophine hadrosaur. The isolated G. latidens teeth are a rare component of channel lag deposits in the middle portion of the formation.[12]

Indeterminate[16]

Hypacrosaurus[16]

H. stebingeri[16]

  • Landslide Butte
  • Two Medicine River

A lambeosaurine hadrosaur

Indeterminate

  • "Choteau/Bynum"
  • Upper

Maiasaura[16]

M. peeblesorum[16]

  • "Choteau/Bynum"
  • Two Medicine River

"More than [two hundred] specimens including articulated skull and postcrania, embryo to adult."[30]

A saurolophine hadrosaur. Choteau Maiasaura remains are found in higher strata than their Two Medicine River counterparts.[6]

Orodromeus[16]

O. makelai[16]

  • "Choteau/Bynum"

An orodromine thescelosaur.

Prosaurolophus[16]

P. maximus[16]

  • Landslide Butte
  • Two Medicine River

"Disarticulated, associated skull and postcrania pertaining to at least [four] individuals."[30]

A saurolophine hadrosaur. Prosaurolophus blackfeetensis, erected for Two Medicine fossils, is a synonym of P. maximus.[31]

Oviraptorosaurs

The first find of an oviraptorosaur in Montana was an articular region from the lower jaw of Caenagnathus sternbergi, from the Two Medicine Formation, according to a 2001 paper by David J. Varrichio.[32] This species had previously only been known from the Canadian province of Alberta.[32] Varrichio observes that during the late Campanian, Alberta and Montana had very similar theropods despite significant differences in the types of herbivorous dinosaur faunas.[32]

Oviraptorosaurs reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Caenagnathus[33]

C. sternbergi[33]

Known from the articular region of a lower jaw, catalogued as MOR 1107[33]

Sometimes considered a synonym of Chirostenotes

Tyrannosauroids

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Tyrannosauroids reported from the Two Medicine Formation
Genus Species Location Stratigraphic position Material Notes Images

Daspletosaurus[16]

D. torosus[16]

Misclassified, actually a new species

Unnamed

  • "Choteau/Bynum"
  • Two Medicine River
  • Upper

Bonebed[34]

Gorgosaurus

G. libratus?

  • "Choteau/Bynum"
  • Upper

Other animals

Many other fossil animals have been found, such as freshwater bivalves, gastropods, turtles, a varanid lizard, and champsosaurs. The multituberculate mammal Cimexomys has been found on Egg Mountain. The species Piksi barbarulna was described based on forelimb bones from the Two Medicine Formation; it was initially thought to be a bird, but subsequently it was reinterpreted as a pterosaur, likely a member of Ornithocheiroidea.[35] Azhdarchoid pterosaurs are also known from the Two Medicine Formation, including a very large, yet-unnamed azhdarchid, the estimated wingspan of which was 8 metres (26 ft), and smaller Montanazhdarcho minor, a non-azhdarchid azhdarchoid.[36][37] Insect and mammal burrows have also been discovered, as well as dinosaur coprolites.

See also

Footnotes

  1. 1 2 3 4 5 6 7 8 9 "Previous Work," Trexler (2001); page 300.
  2. "Introduction," Trexler (2001); pages 299-300.
  3. 1 2 3 4 "Introduction," Trexler (2001); page 299.
  4. "Introduction," Trexler (2001); pages 298-299.
  5. 1 2 "Geological Setting," Trexler (2001); page 300.
  6. 1 2 3 "Faunal Turnover, Migration, and Evolution," Trexler (2001); page 304.
  7. "Geological Setting," Trexler (2001); pages 300-301.
  8. 1 2 3 4 5 6 7 "Geological Setting," Trexler (2001); page 301.
  9. 1 2 3 4 5 6 7 8 9 10 11 "Geological Setting," Trexler (2001); page 302.
  10. 1 2 3 "Abstract," Trexler (2001); page 298.
  11. 1 2 3 4 5 6 "Faunal Turnover, Migration, and Evolution," Trexler (2001); page 306.
  12. 1 2 3 4 5 6 "Two Medicine Fauna," Trexler (2001); page 303.
  13. Horner, J. R., Schmitt, J. G., Jackson, F., & Hanna, R. (2001). Bones and rocks of the Upper Cretaceous Two Medicine-Judith River clastic wedge complex, Montana. In Field trip guidebook, Society of Vertebrate Paleontology 61st Annual Meeting: Mesozoic and Cenozoic Paleontology in the Western Plains and Rocky Mountains. Museum of the Rockies Occasional Paper (Vol. 3, pp. 3-14).
  14. 1 2 3 "Two Medicine Fauna," Trexler (2001); page 302.
  15. "Two Medicine Fauna," Trexler (2001); pages 302-303.
  16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 "3.11 Montana, United States; 6. Upper Two Medicine Formation," in Weishampel, et al. (2004). Page 583.
  17. 1 2 3 4 Penkalski, P. (2013). "A new ankylosaurid from the late Cretaceous Two Medicine Formation of Montana, USA". Acta Palaeontologica Polonica. doi:10.4202/app.2012.0125.
  18. 1 2 3 {{Cite http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0062421}}
  19. "Table 11.1," in Weishampel, et al. (2004). Page 212.
  20. 1 2 3 "Table 23.1," in Weishampel, et al. (2004). Page 495.
  21. "Table 23.1," in Weishampel, et al. (2004). Page 496.
  22. "Table 10.1," in Weishampel, et al. (2004). Page 198.
  23. 1 2 3 4 5 6 7 8 "3.11 Montana, United States; 2. Lower Two Medicine Formation," in Weishampel, et al. (2004). Pages 582-583.
  24. 1 2 3 "3.11 Montana, United States; 2. Lower Two Medicine Formation" and "3.11 Montana, United States; 6. Upper Two Medicine Formation," in Weishampel, et al. (2004). Pages 582-583.
  25. Britt, 1993. "Pneumatic postcranial bones in dinosaurs and other archosaurs." PhD Thesis, University of Calgary (Canada), Alberta.
  26. "Two Medicine Fauna," Trexler (2001); page 304.
  27. Gates, T.A.; Horner, J.R.; Hanna, R.R.; Nelson, C.R. (2011). "New unadorned hadrosaurine hadrosaurid (Dinosauria, Ornithopoda) from the Campanian of North America". Journal of Vertebrate Paleontology 31 (4): 798–811. doi:10.1080/02724634.2011.577854.
  28. Prieto-Márquez, Albert (2010). "Glishades ericksoni, a new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous of North America" (PDF). Zootaxa 2452: 1–17.
  29. Nicolás E. Campione, Kirstin S. Brink, Elizabeth A. Freedman, Christopher T. McGarrity and David C. Evans (2012). "‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the Two Medicine Formation of Montana: implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-012-0097-1.
  30. 1 2 3 "Table 20.1," in Weishampel, et al. (2004). Page 440.
  31. McGarrity, C. T., Campione, N. E. and Evans, D. C. (2013), Cranial anatomy and variation in Prosaurolophus maximus (Dinosauria: Hadrosauridae). Zoological Journal of the Linnean Society, 167: 531–568. doi: 10.1111/zoj.12009
  32. 1 2 3 "Abstract," Varricchio (2001); page 42.
  33. 1 2 3 "Table 5.1," in Varricchio (2001). Page 44.
  34. Currie, Trexler, Koppelhus, Wicks and Murphy (2005). "An unusual multi-individual tyrannosaurid bonebed in the Two Medicine Formation (Late Cretaceous, Campanian) of Montana (USA)." P.p. 313-324 in Carpenter, K. (ed.), The Carnivorous Dinosaurs. III. Theropods as living animals.
  35. Federico L. Agnolin and David Varricchio (2012). "Systematic reinterpretation of Piksi barbarulna Varricchio, 2002 from the Two Medicine Formation (Upper Cretaceous) of Western USA (Montana) as a pterosaur rather than a bird" (PDF). Geodiversitas 34 (4): 883–894. doi:10.5252/g2012n4a10.
  36. Naish, Darren (January 30, 2013). "A new azhdarchid pterosaur: the view from Europe becomes ever more interesting". Tetrapod Zoology. Retrieved February 6, 2013.
  37. Carroll, N. REASSIGNMENT OF MONTANAZHDARCHO MINOR AS A NON-AZHDARCHID MEMBER OF THE AZHDARCHOIDEA, SVP 2015

References

This article is issued from Wikipedia - version of the Thursday, April 14, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.