Ultraparallel theorem

In hyperbolic geometry, the ultraparallel theorem states that every pair of ultraparallel lines (lines that are not intersecting and not limiting parallel) has a unique common perpendicular hyperbolic line.


Hilberts construction

Let r and s be two non-intersecting lines.

From any two points A and C on s draw AB and CB' perpendicular to r. (B and B' on r)

If it happens that AB = CB' the desired common perpendicular joins the midpoints AC and BB'(by the symmetry of the isocleses birectangle ACB'B ). . If not, suppose AB < CB'. Take A' on CB' so that A'B' = AB. Through A' draw a line s', making the same angle with A'B' that s makes with AB. Then s meets s' in an ordinary point D. Take a point D' on ray AC so that AD' = A'D.

Then the perpendicular bisector of DD' is also perpendicular to r.[1]

Proof in the Poincaré half-plane model

Let

a < b < c < d

be four distinct points on the abscissa of the Cartesian plane. Let p and q be semicircles above the abscissa with diameters ab and cd respectively. Then in the Poincaré half-plane model HP, p and q represent ultraparallel lines.

Compose the following two hyperbolic motions:

x \to x-a\,
\mbox{inversion in the unit semicircle.}\,

Then a \to \infty, b \to (b-a)^{-1},\quad c \to (c-a)^{-1},\quad d \to (d-a)^{-1}.

Now continue with these two hyperbolic motions:

x \to x-(b-a)^{-1}\,
x \to \left [ (c-a)^{-1} - (b-a)^{-1} \right ]^{-1} x\,

Then a stays at \infty, b \to 0, c \to 1, d \to z (say). The unique semicircle, with center at the origin, perpendicular to the one on 1z must have a radius tangent to the radius of the other. The right triangle formed by the abscissa and the perpendicular radii has hypotenuse of length \begin{matrix} \frac{1}{2} \end{matrix} (z+1). Since \begin{matrix} \frac{1}{2} \end{matrix} (z-1) is the radius of the semicircle on 1z, the common perpendicular sought has radius-square

\frac{1}{4} \left [ (z+1)^2 - (z-1)^2 \right ] = z.\,

The four hyperbolic motions that produced z above can each be inverted and applied in reverse order to the semicircle centered at the origin and of radius \sqrt{z} to yield the unique hyperbolic line perpendicular to both ultraparallels p and q.

Proof in the Beltrami-Klein model

In the Beltrami-Klein model of the hyperbolic geometry:

If one of the chords happens to be a diameter, we do not have a pole, but in this case any chord perpendicular to the diameter it is also perpendicular in the Beltrami-Klein model, and so we draw a line through the pole of the other line intersecting the diameter at right angles to get the common perpendicular.

The proof is completed by showing this construction is always possible:


References

  1. coxeter. non euclidean geometry. pp. 190–192. ISBN 978-0-88385-522-5.
This article is issued from Wikipedia - version of the Thursday, January 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.