V-ring (ring theory)
In mathematics, a V-ring is a ring R such that every simple R-module is injective. The following three conditions are equivalent:[1]
- Every simple left (resp. right) R-module is injective
- The radical of every left (resp. right) R-module is zero
- Every left (resp. right) ideal of R is an intersection of maximal left (resp. right) ideals of R
A commutative ring is a V-ring if and only if it is Von Neumann regular.
References
- ↑ Faith, Carl (1973). Algebra: Rings, modules, and categories. Springer-Verlag. ISBN 0387055517.
This article is issued from Wikipedia - version of the Sunday, October 25, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.