Van der Grinten projection

Van der Grinten projection of the world.

The van der Grinten projection is a compromise map projection that is neither equal-area nor conformal. Areas of a fixed size at a distance from the equator look smaller than they do on a Mercator map but larger than a globe. It projects the entire Earth into a circle, though the polar regions are subject to extreme distortion. The projection was the first of four proposed by Alphons J. van der Grinten in 1904, and, unlike perspective projections, is an arbitrary geometric construction on the plane. It was made famous when the National Geographic Society adopted it as their reference map of the world from 1922 until 1988.[1]

Geometric construction

The geometric construction given by van der Grinten can be written algebraically:[2]

x = \frac {\pm \pi \left(A\left(G - P^2\right) + \sqrt {A^2 \left(G - P^2\right)^2 - \left(P^2 + A^2\right)\left(G^2 - P^2\right)}\right)} {P^2 + A^2}\,
y = \frac {\pm \pi \left(P Q - A \sqrt{\left(A^2 + 1\right)\left(P^2 + A^2\right) - Q^2} \right)} {P^2 + A^2}

where x takes the sign of λλ0, y takes the sign of φ and

A = \frac {1} {2}\left|\frac {\pi} {\lambda - \lambda_0} - \frac {\lambda - \lambda_0} {\pi}\right|
G = \frac {\cos \theta} {\sin \theta + \cos \theta - 1}
P = G\left(\frac {2} {\sin \theta} - 1\right)
\theta = \arcsin \left|\frac {2 \varphi} {\pi}\right|
Q = A^2 + G\,

Should it occur that φ = 0, then

x = \left(\lambda - \lambda_0\right)\,
y = 0\,

Similarly, if λ = λ0 or φ = ±π/2, then

x = 0\,
y = \pm \pi \tan {\theta / 2 }

In all cases, φ is the latitude, λ is the longitude, and λ0 is the central meridian of the projection.

See also

References

  1. Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp.258-262, ISBN 0-226-76747-7.
  2. Map Projections - A Working Manual, USGS Professional Paper 1395, John P. Snyder, 1987, pp.239-242

Sources

This article is issued from Wikipedia - version of the Thursday, April 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.