Vermeil's theorem

In differential geometry, Vermeil's theorem essentially states that that the scalar curvature is the only (non-trivial) absolute invariant among those of prescribed type suitable for Einstein’s theory.[1] The theorem was proved by the German mathematician Hermann Vermeil in 1917.[2]

Standard version of the theorem

The theorem states that the Ricci scalar R[3] is the only scalar invariant (or absolute invariant) linear in the second derivatives of the metric tensor g_{\mu\nu}.

See also

Notes

  1. Kosmann-Schwarzbach, Y. (2011), The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century: Invariance and Conservation Laws in the 20th Century, New York Dordrecht Heidelberg London: Springer, p. 71, doi:10.1007/978-0-387-87868-3, ISBN 978-0-387-87867-6
  2. H. Vermeil (1917). "Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen". Mathematisch physikalische Klasse 21: 334–344. doi:10.1007/BF01457097.
  3. Let us recall that Ricci scalar R is linear in the second derivatives of the metric tensor g_{\mu\nu}, quadratic in the first derivatives and contains the inverse matrix g^{\mu\nu}, which is a rational function of the components g_{\mu\nu}.

References

  • H. Vermeil (1917). "Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen". Mathematisch physikalische Klasse 21: 334–344. doi:10.1007/BF01457097. 
This article is issued from Wikipedia - version of the Monday, January 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.