Vermeil's theorem
In differential geometry, Vermeil's theorem essentially states that that the scalar curvature is the only (non-trivial) absolute invariant among those of prescribed type suitable for Einstein’s theory.[1] The theorem was proved by the German mathematician Hermann Vermeil in 1917.[2]
Standard version of the theorem
The theorem states that the Ricci scalar [3] is the only scalar invariant (or absolute invariant) linear in the second derivatives of the metric tensor .
See also
Notes
- ↑ Kosmann-Schwarzbach, Y. (2011), The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century: Invariance and Conservation Laws in the 20th Century, New York Dordrecht Heidelberg London: Springer, p. 71, doi:10.1007/978-0-387-87868-3, ISBN 978-0-387-87867-6
- ↑ H. Vermeil (1917). "Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen". Mathematisch physikalische Klasse 21: 334–344. doi:10.1007/BF01457097.
- ↑ Let us recall that Ricci scalar is linear in the second derivatives of the metric tensor , quadratic in the first derivatives and contains the inverse matrix which is a rational function of the components .
References
- H. Vermeil (1917). "Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen". Mathematisch physikalische Klasse 21: 334–344. doi:10.1007/BF01457097.
This article is issued from Wikipedia - version of the Monday, January 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.