Zariski's connectedness theorem

In algebraic geometry, Zariski's connectedness theorem says that under certain conditions the fibers of a morphism of varieties are connected. It is an extension of Zariski's main theorem to the case when the morphism of varieties need not be birational.

Zariski's connectedness theorem gives a rigorous version of the "principle of degeneration" introduced by Enriques, which says roughly that a limit of absolutely irreducible cycles is absolutely connected.

Statement

Suppose that f is a proper surjective morphism of varieties from X to Y such that the function field of Y is separably closed in that of X. Then Zariski's connectedness theorem says that the inverse image of any normal point of Y is connected. An alternative version says that if f is proper and f* OX = OY, then f is surjective and the inverse image of any point of Y is connected.

References

This article is issued from Wikipedia - version of the Wednesday, July 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.