Particular values of Riemann zeta function
This article gives some specific values of the Riemann zeta function, including values at integer arguments, and some series involving them.
The Riemann zeta function at 0 and 1
At zero, one has
At 1 there is a pole, so ζ(1) is not defined but the left and right limits are:
- .
Since it is a pole of first order, its principal value exists and is equal to the Euler–Mascheroni constant γ = 0.57721 56649+.
Positive integers
Even positive integers
For the even positive integers, one has the relationship to the Bernoulli numbers:
for n ∈ N. The first few values are given by:
- ( A013661)
- (the demonstration of this equality is known as the Basel problem)
- ( A013662)
- (the Stefan–Boltzmann law and Wien approximation in physics)
- ( A013664)
- ( A013666)
- ( A013668)
- ( A013670)
- ( A013672).
The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as
where An and Bn are integers for all even n. These are given by the integer sequences A002432 and A046988, respectively, in OEIS. Some of these values are reproduced below:
n | A | B |
---|---|---|
2 | 6 | 1 |
4 | 90 | 1 |
6 | 945 | 1 |
8 | 9450 | 1 |
10 | 93555 | 1 |
12 | 638512875 | 691 |
14 | 18243225 | 2 |
16 | 325641566250 | 3617 |
18 | 38979295480125 | 43867 |
20 | 1531329465290625 | 174611 |
22 | 13447856940643125 | 155366 |
24 | 201919571963756521875 | 236364091 |
26 | 11094481976030578125 | 1315862 |
28 | 564653660170076273671875 | 6785560294 |
30 | 5660878804669082674070015625 | 6892673020804 |
32 | 62490220571022341207266406250 | 7709321041217 |
34 | 12130454581433748587292890625 | 151628697551 |
If we let ηn be the coefficient B/A as above,
then we find recursively,
This recurrence relation may be derived from that for the Bernoulli numbers.
Also, there is another recurrence:
which can be proved, using that
The even zeta constants have the generating function:
Since
the formula also shows that for ,
- .
Odd positive integers
For the first few odd natural numbers one has
-
- (the harmonic series);
- ( A013663)
- ( A013665)
- ( A013667)
It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n+1) (n ∈ N) are irrational.[1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.[2]
They appear in physics, in correlation functions of antiferromagnetic xxx spin chain.[3]
Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.
ζ(5)
Plouffe gives the following identities
ζ(7)
Note that the sum is in the form of a Lambert series.
ζ(2n + 1)
By defining the quantities
a series of relationships can be given in the form
where An, Bn, Cn and Dn are positive integers. Plouffe gives a table of values:
n | A | B | C | D |
---|---|---|---|---|
3 | 180 | 7 | 360 | 0 |
5 | 1470 | 5 | 3024 | 84 |
7 | 56700 | 19 | 113400 | 0 |
9 | 18523890 | 625 | 37122624 | 74844 |
11 | 425675250 | 1453 | 851350500 | 0 |
13 | 257432175 | 89 | 514926720 | 62370 |
15 | 390769879500 | 13687 | 781539759000 | 0 |
17 | 1904417007743250 | 6758333 | 3808863131673600 | 29116187100 |
19 | 21438612514068750 | 7708537 | 42877225028137500 | 0 |
21 | 1881063815762259253125 | 68529640373 | 3762129424572110592000 | 1793047592085750 |
These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.
The only fast algorithm for the calculation of Riemann's zeta function for any integer argument was found by E. A. Karatsuba.[4][5][6]
Negative integers
In general, for negative integers, one has
The so-called "trivial zeros" occur at the negative even integers:
The first few values for negative odd integers are
However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.
So ζ(m) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.
Derivatives
The derivative of the zeta function at the negative even integers is given by
The first few values of which are
One also has
- ( A075700)
and
- ( A084448)
where A is the Glaisher–Kinkelin constant.
Series involving ζ(n)
The following sums can be derived from the generating function:
where ψ0 is the digamma function.
Series related to the Euler–Mascheroni constant (denoted by γ) are
and using the principal value
which of course affects only the value at 1. These formulae can be stated as
and show that they depend on the principal value of ζ(1) = γ.
Nontrivial zeros
Zeros of the Riemann zeta except negative integers are called "nontrivial zeros". See Andrew Odlyzko's website for their tables and bibliographies.
References
- ↑ Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences. Série I. Mathématique 331: 267–270. arXiv:math/0008051. doi:10.1016/S0764-4442(00)01624-4.
- ↑ W. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. doi:10.1070/rm2001v056n04abeh000427.
- ↑ Boos, H. E.; Korepin, V. E.; Nishiyama, Y.; Shiroishi, M. (2002), "Quantum correlations and number theory", J. Phys. A 35: 4443–4452, arXiv:cond-mat/0202346.
- ↑ Karatsuba, E. A. (1995). "Fast calculation of the Riemann zeta function ζ(s) for integer values of the argument s". Probl. Perdachi Inf. 31 (4): 69–80. MR 1367927.
- ↑ E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).
- ↑ E. A. Karatsuba: Fast evaluation of ζ(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).
Further reading
- Ciaurri, Óscar; Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. (May 2015). "A Simple Computation of ζ(2k)". The American Mathematical Monthly 122 (5): 444–451. doi:10.4169/amer.math.monthly.122.5.444.
- Simon Plouffe, "Identities inspired from Ramanujan Notebooks", (1998).
- Simon Plouffe, "Identities inspired by Ramanujan Notebooks part 2 PDF" (2006).
- Vepstas, Linas (2006). "On Plouffe's Ramanujan Identities" (PDF). arXiv:math.NT/0609775.
- Zudilin, Wadim (2001). "One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational". Russian Mathematical Surveys 56: 774–776. doi:10.1070/RM2001v056n04ABEH000427. MR 1861452. PDF PDF Russian PS Russian
- Nontrival zeros reference by Andrew Odlyzko: