Absolutely convex set
A set C in a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced, in which case it is called a disk.
Properties
A set is absolutely convex if and only if for any points
in
and any numbers
satisfying
the sum
belongs to
.
Since the intersection of any collection of absolutely convex sets is absolutely convex then for any subset A of a vector space one can define its absolutely convex hull to be the intersection of all absolutely convex sets containing A.
Absolutely convex hull

The light gray area is the Absolutely convex hull of the cross.
The absolutely convex hull of the set A assumes the following representation
.
See also
![]() |
The Wikibook Algebra has a page on the topic of: Vector spaces |
- vector (geometric), for vectors in physics
- Vector field
References
- Robertson, A.P.; W.J. Robertson (1964). Topological vector spaces. Cambridge Tracts in Mathematics 53. Cambridge University Press. pp. 4–6.
- Narici, Lawrence; Beckenstein, Edward (July 26, 2010). Topological Vector Spaces, Second Edition. Pure and Applied Mathematics (Second ed.). Chapman and Hall/CRC.
|
This article is issued from Wikipedia - version of the Sunday, April 17, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.