Al-Salam–Chihara polynomials

Not to be confused with Al-Salam–Carlitz polynomials.

In mathematics, the Al-Salam–Chihara polynomials Qn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Chihara (1976). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010,14.8) give a detailed list of the properties of Al-Salam–Chihara polynomials.

Definition

The Al-Salam–Chihara polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

 Q_n(x;a,b;q) = \frac{(ab;q)_n}{a^n}{}_3\phi_2(q^{-n}, ae^{i\theta}, ae^{-i\theta}; ab,0; q,q)

where x = cos(θ).

References

This article is issued from Wikipedia - version of the Sunday, May 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.