Alcanivorax

Chromohalobacter
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Oceanospirillales
Family: Alcanivoracaceae
Genus: Alcanivorax
Yakimov
et al. 1998
Type species
Alcanivorax borkumensis
Species

Alcanivorax balearicus
Alcanivorax borkumensis
Alcanivorax dieselolei
Alcanivorax hongdengensis
Alcanivorax marinus
Alcanivorax pacificus
Alcanivorax venustensis

Alcanivorax borkumensis is an alkane-degrading marine bacterium which naturally propagates and becomes predominant in crude-oil-containing seawater when nitrogen and phosphorus nutrients are supplemented. They are currently thought to be the world's most important oil-degrading organisms.[1][2]

Description

A. borkumensis is a rod-shaped bacterium without flagella that obtains its energy primarily from consuming alkanes (a type of hydrocarbon). It is aerobic, meaning it uses oxygen to gain energy, and it is halophilic, meaning it tends to live in environments that contain salt, such as salty ocean water. It is also Gram-negative, which essentially means it has a relatively thin cell wall. It is also nonmotile; however, other organisms that appear to be in the same genus are motile through flagella.[3][4]

Genome

The genome of A. borkumensis is a single circular chromosome that contains 3,120,143 base pairs. It is highly adapted to degrading petroleum oil. For example, a certain sequence on the genome codes for the degradation of a certain range of alkanes. The A. borkumensis genome has many sequences that each code for a different type of alkane, allowing it to be highly adaptable and versatile. Its genome also contains instructions for the formation of biosurfactants which aid in the process of degradation. To deal with external threats, the A. borkumensis genome also codes for several defensive mechanisms. Coping with high concentrations of sodium ions (i.e. in ocean water), and protecting against the UV radiation experienced on the surface of the earth are both important for the A. borkumensis bacteria, whose genome contains ways to solve both of these problems.[5]

Ecology

A. borkumensis is found naturally in seawater environments. It is more common in oceanic areas containing petroleum oil (whether from spills, natural fields, or other sources), although it can be found in small amounts in unpolluted water. It has been found across the world in various locations both in coastal environments and oceanic environments. It also can flourish in areas with heavy tides and other sea related currents/flow. It is found only on or near the surface of water. A. borkumensis can live in salinities ranging from 1.0-12.5% and in temperatures ranging from 4-35°C.[4] The abundance of A. borkumensis in oil-affected environments is because the bacteria use the compounds in oil as a source of energy, thus populations of A. borkumensis naturally flourish at oil spills or other similar locations. A. borkumensis outcompetes other species of the Alcanivorax genus, likely due to its highly flexible DNA and metabolism. A. borkumensis also outcompetes other alkane-degrading organisms such as Acinetobacter venetianus. After a certain period of time, an oily and saline environment containing A. borkumensis and Acinetobacter venetianus would eventually become dominated by A. borkumensis because A. borkumensis can consume a wider variety of alkanes than other known species.[6]

Metabolism

A. borkumensis primarily uses alkanes as its source of energy/carbon, but it can use a few other organic compounds. Unlike most other cells, it cannot consume more common substances such as sugars or amino acids as a source of energy.[4]

To increase the growth rate of a population of A. borkumensis bacteria, phosphorus and nitrogenous compounds can be added to the environment. These substances act as a fertilizer for the bacteria and help them grow at an increased rate.[2]

A. borkumensis and biosurfactants

When A. borkumensis bacteria use alkanes as their source of energy, each cell forms a biosurfactant (other sources of energy do not cause the bacteria to produce this biosurfactant). A biosurfactant is an extra layer of material that forms along the cell membrane. The substances that make up the biosurfactant of A. borkumensis can reduce the surface tension of water, which helps with the degradation of oil. They are also emulsifiers, which further serve to create the oil/water emulsion, making oil more soluble. A. borkumensis forms a biofilm around an oil droplet in seawater and proceeds to use biosurfactants and metabolism to degrade the oil into a water-soluble substance.[4]

Role in oil biodegradation

Petroleum oil is toxic for most life forms and pollution of the environment by oil causes major ecological problems. A considerable amount of petroleum oil entering the sea is eliminated by the microbial biodegradation activities of microbial communities. A. borkumensis is a recently discovered hydrocarbonoclastic bacterium and is probably the most important global oil degrader.[1] A. borkumensis is capable of degrading oil in seawater environments. It is known as a hydrocarbonoclastic organism, with the root ‘clastic’ meaning it can divide something into parts (in this case hydrocarbons). Crude oil, or petroleum, is predominantly made up of hydrocarbons, a product that consists of a long chain of carbon atoms attached to hydrogen atoms. Whereas most organisms use sugars or amino acids for their source of carbon/energy, A. borkumensis uses alkanes, a type of hydrocarbon, in its metabolic process. This diet allows A. borkumensis to flourish in marine environments that have been affected by oil spills. Through its metabolism, A. borkumensis can break down oil into harmless compounds. This ability makes this particular species a major potential source for bioremediation of oil-polluted marine environments.[2]

Potential as antioil spill agent

Oil spills can occur during transportation of oil or during extraction. Such spills may dump significant quantities of oil into the ocean and pollute the environment, affecting ecosystems near and far.

Normally, many years are needed for an ecosystem to recover fully (if at all) from an oil spill, so scientists have been looking into ways to expedite the cleanup of areas affected by an oil spill. Most efforts so far use direct human involvement/labor to physically remove the oil from the environment. However, A. borkumensis presents a possible alternative. Since A. borkumensis naturally breaks down oil molecules to a nonpolluting state, it would help ecosystems to quickly recover from an oil spill disaster. The organisms also naturally grow in oil-contaminated seawater, thus are a native species. If the process A. borkumensis uses to break down oil could be sped up or made more efficient, this would aid recovering ecosystems. Some examples include encouraging the growth of A. borkumensis (through phosphorus and nitrogen fertilization) so more of them are breaking down oil, or encouraging the metabolism of A. borkumensis so they metabolize faster and more.[2][6]

References

  1. 1 2 Martins VAP; et al. (2008). "Genomic Insights into Oil Biodegradation in Marine Systems". Microbial Biodegradation: Genomics and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-17-2.
  2. 1 2 3 4 , Kasai, Y et al. "Predominant Growth of Alcanivorax Strains in Oil-contaminated and Nutrient-supplemented Sea Water." Environmental Microbiology 4.3 (2002): 141-47.
  3. , Fernandez-Martinez, Javier, et al. "Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax." International Journal of Systematic and Evolutionary Microbiology 53 (2003): 331-338.
  4. 1 2 3 4 , Yakimov, Michail M., et al. "Alcanivorax Borkumensis gen. nov., sp. nov., A New, Hydrocarbon-degrading And Surfactant-producing Marine Bacterium." International Journal of Systematic Bacteriology 48 (1998): 339-348.
  5. , Schneiker, Susanne, et al. "Genome Sequence of the Ubiquitous Hydrocarbon-degrading Marine Bacterium Alcanivorax Borkumensis." Nature Biotechnology 24.8 (2006): 997-1004.
  6. 1 2 , Hara, A et al. "Alcanivorax Which Prevails in Oil-contaminated Seawater Exhibits Broad Substrate Specificity for Alkane Degradation." Environmental Microbiology 5.9 (2003): 746-53.

External links

This article is issued from Wikipedia - version of the Friday, April 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.