Autoimmune lymphoproliferative syndrome

Autoimmune lymphoproliferative syndrome
Classification and external resources
ICD-9-CM 279.41
OMIM 601859 603909
DiseasesDB 33425 33424

Autoimmune lymphoproliferative syndrome (ALPS), also known as Canale-Smith syndrome,[1] is a form of lymphoproliferative disorder (LPDs). It affects lymphocyte apoptosis.[2] It is a RASopathy.

It is a rare genetic disorder of abnormal lymphocyte survival caused by defective Fas mediated apoptosis.[3] Normally, after infectious insult, the immune system down-regulates by increasing Fas expression on activated B and T lymphocytes and Fas-ligand on activated T lymphocytes. Fas and Fas-ligand interact to trigger the caspase cascade, leading to cell apoptosis. Patients with ALPS have a defect in this apoptotic pathway, leading to chronic non-malignant lymphoproliferation, autoimmune disease, and secondary cancers.[4]

Genetics

This condition is usually caused by mutations in the FAS gene. Rarely cases due to mutations in other genes including the FAS ligand gene have been reported.[5]

Clinical manifestations

All people with ALPS have signs of lymphoproliferation, which makes it the most common clinical manifestation of the disease. The increased proliferation of lymphoid cells can cause the size of lymphoid organs such as the lymph nodes and spleen to increase (lymphadenopathy and splenomegaly, present in respectively over 90% and over 80% of patients). The liver is enlarged (hepatomegaly in 30 - 40% of patients).

Autoimmune disease is the second most common clinical manifestation and one that most often requires treatment. Autoimmune cytopenias: Most common. Can be mild to very severe. Can be intermittent or chronic.[6] These include: Autoimmune hemolytic anemia, Autoimmune neutropenia, Autoimmune thrombocytopenia.

Other signs can affect organ systems similar to systemic lupus erythematosus (least common, affecting <5% of patients) Symptoms of the nervous system include: Autoimmune cerebellar ataxia; Guillain-Barre syndrome; transverse myelitis. Gastrointestinal signs like Autoimmune esophagitis, gastritis, colitis, hepatitis, pancreatitis can be found or (Dermatologic) Urticaria, (Pulmonary) bronchiolitis obliterans, (Renal) Autoimmune glomerulonephritis, nephrotic syndrome.

Another sign are cancers such as Hodgkin and non-Hodgkin lymphomas which appear to be increased,[1] possibly due to Epstein-Barr virus-encoded RNA-positivity. Some carcinomas may be occur. Unaffected family members with genetic mutations are also at an increased risk of developing cancer.

Laboratory manifestations

Classification

2003 nomenclature[11]

Revised nomenclature (2010)[12]

Diagnostic algorithm

The old diagnostic criteria for the illness included:[11] Chronic non-malignant lymphoproliferation, elevated peripheral blood DNTs and defective in vitro Fas mediated apoptosis.

The new criteria[12] requires chronic non-malignant lymphoproliferation (>6 months lymphadenopathy and/or splenomegaly), elevated peripheral blood DNTs. A primary accessory in diagnosis is defective in vitro Fas mediated apoptosis and somatic or germline mutation in ALPS causative gene (FAS, FASL, CASP10).

The secondary accessory in diagnosis are elevated biomarkers (Plasma sFASL >200pg/ml, Plasma IL-10 >20pg/ml, Plasma or serum vitamin B12 >1500 ng/L, Plasma IL-18 >500pg/ml) and immunohistochemical findings on biopsy consistent with ALPS as determined by an experienced hematopathologist. Also another sign is autoimmune cytopenias and polyclonal hypergammaglobulinemia and a family history of ALPS or non-malignant lymphoproliferation.

A definitive diagnosis is chronic non-malignant lymphoproliferation and/or elevated peripheral blood DNTs plus one primary accessory criteria. A probable diagnosis is the same but with one secondary accessory criteria.

Treatment

Treatment is most commonly directed at autoimmune disease and may be needed to treat bulky lymphoproliferation. First line therapies include corticosteroids (very active but toxic with chronic use), and IVIgG, which are not as effective as in other immune cytopenia syndromes.

Second line therapies include: mycophenolate mofetil (cellcept)[15] which inactivates inosine monophosphate, most studied in clinical trials with responses varying (relapse, resolution, partial response). It does not affect lymphoproliferation or reduce DNTs, with no drug-drug interactions. This treatment is commonly used agent in patients who require chronic treatment based on tolerance and efficacy. It may cause hypogammaglobulinemia (transient) requiring IVIgG replacement.

Sirolimus (rapamycin, rapamune) which is a mTOR (mammalian target of rapamycin) inhibitor[16] can be active in most patients and can in some cases lead to complete or near-complete resolution of autoimmune disease (>90%)[17][18] With this treatment most patients have complete resolution of lymphoproliferation, including lymphadenopathy and splenomegaly (>90%) and have elimination of peripheral blood DNTs. Sirolimus may not be as immune suppressive in normal lymphocytes as other agents. Some patients have had improvement in immune function with transition from cellcept to rapamycin[19] and it has not been reported to cause hypogammaglobulinemia. Hypothetically, Sirolimus may have lower risk of secondary cancers as opposed to other immune suppressants and requires therapeutic drug monitoring. It is the second most commonly used agent in patients that require chronic therapy. It is mostly well tolerated (though side effects include mucositis, diarrhea, hyperlipidemia, delayed wound healing) with drug-drug interactions. It has better activity against autoimmune disease and lymphoproliferation than mycophenolate mofetil and other drugs; however, sirolimus requires therapeutic drug monitoring and can cause mucositis. A risk with any agent in pre-cancerous syndrome as immune suppression can decreased tumor immunosurvellence. Its mTOR inhibitors active against lymphomas, especially EBV+ lymphomas. The Goal serum trough is 5-15 ng/ml and can consider PCP prophylaxis but usually not needed.

Other treatments may include drugs like Fansidar,[20][21] mercaptopurine: More commonly used in Europe. Another is rituximab but this can cause lifelong hypogammaglobulinemia[22] and a splenectomy but there is a >30% risk of pneumococcal sepsis even with vaccination and antibiotic prophylaxis[23][24]

References

  1. 1 2 Straus SE, Jaffe ES, Puck JM et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001 Jul 1;98(1):194-200. PMID 11418480
  2. Fleisher, Thomas A. (2007). "The autoimmune lymphoproliferative syndrome: An experiment of nature involving lymphocyte apoptosis". Immunologic Research 40 (1): 87–92. doi:10.1007/s12026-007-8001-1. PMID 18193364.
  3. Rao, V. Koneti; Straus, Stephen E. (2006). "Causes and consequences of the autoimmune lymphoproliferative syndrome". Hematology 11 (1): 15–23. doi:10.1080/10245330500329094. PMID 16522544.
  4. Teachey, David T.; Seif, Alix E.; Grupp, Stephan A. (2010). "Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS)". British Journal of Haematology 148 (2): 205–16. doi:10.1111/j.1365-2141.2009.07991.x. PMC 2929682. PMID 19930184.
  5. Magerus-Chatinet A, Stolzenberg MC, Lanzarotti N, Neven B, Daussy C, Picard C, Neveux N, Desai M, Rao M, Ghosh K, Madkaikar M, Fischer A, Rieux-Laucat F (2012) Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation. J Allergy Clin Immunol
  6. Teachey, David T.; Manno, Catherine S.; Axsom, Kelly M.; Andrews, Timothy; Choi, John K.; Greenbaum, Barbara H.; McMann, Joseph M.; Sullivan, Kathleen E.; et al. (2005). "Unmasking Evans syndrome: T-cell phenotype and apoptotic response reveal autoimmune lymphoproliferative syndrome (ALPS)". Blood 105 (6): 2443–8. doi:10.1182/blood-2004-09-3542. PMID 15542578.
  7. Bleesing, Jack J.H.; Brown, Margaret R.; Novicio, Cynthia; Guarraia, David; Dale, Janet K.; Straus, Stephen E.; Fleisher, Thomas A. (2002). "A Composite Picture of TcRα/β+ CD4CD8 T Cells (α/β-DNTCs) in Humans with Autoimmune Lymphoproliferative Syndrome". Clinical Immunology 104 (1): 21–30. doi:10.1006/clim.2002.5225. PMID 12139944.
  8. Magerus-Chatinet, Aude; Stolzenberg, Marie-Claude; Loffredo, Maria S.; Neven, Bénédicte; Schaffner, Catherine; Ducrot, Nicolas; Arkwright, Peter D.; Bader-Meunier, Brigitte; et al. (2009). "FAS-L, IL-10, and double-negative CD4CD8 TCR α/β+ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function". Blood 113 (13): 3027–30. doi:10.1182/blood-2008-09-179630. PMID 19176318.
  9. Caminha, Iusta; Fleisher, Thomas A.; Hornung, Ronald L.; Dale, Janet K.; Niemela, Julie E.; Price, Susan; Davis, Joie; Perkins, Katie; et al. (2010). "Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome". Journal of Allergy and Clinical Immunology 125 (4): 946–949.e6. doi:10.1016/j.jaci.2009.12.983. PMC 3412519. PMID 20227752.
  10. Seif, A. E.; Manno, C. S.; Sheen, C.; Grupp, S. A.; Teachey, D. T. (2010). "Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: A multi-institutional study". Blood 115 (11): 2142–5. doi:10.1182/blood-2009-08-239525. PMID 20068224.
  11. 1 2 Sneller, Michael C.; Dale, Janet K.; Straus, Stephen E. (2003). "Autoimmune lymphoproliferative syndrome". Current Opinion in Rheumatology 15 (4): 417–21. doi:10.1097/00002281-200307000-00008. PMID 12819469.
  12. 1 2 Oliveira, J. B.; Bleesing, J. J.; Dianzani, U.; Fleisher, T. A.; Jaffe, E. S.; Lenardo, M. J.; Rieux-Laucat, F.; Siegel, R. M.; et al. (2010). "Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): Report from the 2009 NIH International Workshop". Blood 116 (14): e35–40. doi:10.1182/blood-2010-04-280347. PMC 2953894. PMID 20538792.
  13. Kuehn, H. S.; Caminha, I.; Niemela, J. E.; Rao, V. K.; Davis, J.; Fleisher, T. A.; Oliveira, J. B. (2011). "FAS Haploinsufficiency is a Common Disease Mechanism in the Human Autoimmune Lymphoproliferative Syndrome". The Journal of Immunology 186 (10): 6035–43. doi:10.4049/jimmunol.1100021. PMID 21490157.
  14. Holzelova, Eliska; Vonarbourg, Cédric; Stolzenberg, Marie-Claude; Arkwright, Peter D.; Selz, Françoise; Prieur, Anne-Marie; Blanche, Stéphane; Bartunkova, Jirina; et al. (2004). "Autoimmune Lymphoproliferative Syndrome with SomaticFasMutations". New England Journal of Medicine 351 (14): 1409–18. doi:10.1056/NEJMoa040036. PMID 15459302.
  15. Koneti Rao, V.; Dugan, Faith; Dale, Janet K.; Davis, Joie; Tretler, Jean; Hurley, John K.; Fleisher, Thomas; Puck, Jennifer; Straus, Stephen E. (2005). "Use of mycophenolate mofetil for chronic, refractory immune cytopenias in children with autoimmune lymphoproliferative syndrome". British Journal of Haematology 129 (4): 534–8. doi:10.1111/j.1365-2141.2005.05496.x. PMID 15877736.
  16. Teachey, D. T.; Obzut, DA; Axsom, K; Choi, JK; Goldsmith, KC; Hall, J; Hulitt, J; Manno, CS; et al. (2006). "Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS)". Blood 108 (6): 1965–71. doi:10.1182/blood-2006-01-010124. PMC 1895548. PMID 16757690.
  17. Teachey, David T.; Greiner, Robert; Seif, Alix; Attiyeh, Edward; Bleesing, Jack; Choi, John; Manno, Catherine; Rappaport, Eric; et al. (2009). "Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome". British Journal of Haematology 145 (1): 101–6. doi:10.1111/j.1365-2141.2009.07595.x. PMC 2819393. PMID 19208097.
  18. Janić, MD; Brasanac, CD; Janković, JS; Dokmanović, BL; Krstovski, RN; Kraguljac Kurtović, JN (2009). "Rapid regression of lymphadenopathy upon rapamycin treatment in a child with autoimmune lymphoproliferative syndrome". Pediatric blood & cancer 53 (6): 1117–9. doi:10.1002/pbc.22151. PMID 19588524.
  19. Teachey, David T. (2011). "Autoimmune Lymphoproliferative Syndrome: New Approaches to Diagnosis and Management". Clinical Advances in Hematology & Oncology 9 (3): 233–5. PMID 21475130.
  20. Van Der Werff Ten Bosch, Jutte; Schotte, Peter; Ferster, Alice; Azzi, Nadira; Boehler, Thomas; Laurey, Genevieve; Arola, Mikko; Demanet, Christian; et al. (2002). "Reversion of autoimmune lymphoproliferative syndrome with an antimalarial drug: Preliminary results of a clinical cohort study and molecular observations". British Journal of Haematology 117 (1): 176–88. doi:10.1046/j.1365-2141.2002.03357.x. PMID 11918552.
  21. Rao, V. Koneti; Dowdell, Kennichi C.; Dale, Janet K.; Dugan, Faith; Pesnicak, Lesley; Bi, Lilia L.; Hoffmann, Victoria; Penzak, Scott; et al. (2007). "Pyrimethamine treatment does not ameliorate lymphoproliferation or autoimmune disease in MRL/lpr-/- mice or in patients with autoimmune lymphoproliferative syndrome". American Journal of Hematology 82 (12): 1049–55. doi:10.1002/ajh.21007. PMID 17674358.
  22. Rao, V. Koneti; Price, Susan; Perkins, Katie; Aldridge, Patricia; Tretler, Jean; Davis, Joie; Dale, Janet K.; Gill, Fred; et al. (2009). "Use of rituximab for refractory cytopenias associated with autoimmune lymphoproliferative syndrome (ALPS)". Pediatric Blood & Cancer 52 (7): 847–52. doi:10.1002/pbc.21965. PMC 2774763. PMID 19214977.
  23. Rao, V. K.; Oliveira, J. B. (2011). "How I treat autoimmune lymphoproliferative syndrome". Blood 118 (22): 5741–51. doi:10.1182/blood-2011-07-325217. PMC 3228494. PMID 21885601.
  24. Neven, Bénédicte; Magerus-Chatinet, Aude; Florkin, Benoit; Gobert, Delphine; Lambotte, Olivier; De Somer, Lien; Lanzarotti, Nina; Stolzenberg, Marie-Claude; et al. (2011). "A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation". Blood 118 (18): 4798–807. doi:10.1182/blood-2011-04-347641. PMID 21885602.
This article is issued from Wikipedia - version of the Sunday, November 29, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.