Binomial nomenclature

"Latin name" redirects here. For personal names in the Roman Empire, see Roman naming conventions.
For the system used for voting, see Binomial voting system.

Binomial nomenclature (also called binominal nomenclature or binary nomenclature) is a formal system of naming species of living things by giving each a name composed of two parts, both of which use Latin grammatical forms, although they can be based on words from other languages. Such a name is called a binomial name (which may be shortened to just "binomial"), a binomen or a scientific name; more informally it is also called a Latin name. The first part of the name identifies the genus to which the species belongs; the second part identifies the species within the genus. For example, humans belong to the genus Homo and within this genus to the species Homo sapiens. The formal introduction of this system of naming species is credited to Swedish natural scientist Carl Linnaeus (author abbrv. L.), effectively beginning with his work Species Plantarum in 1753.[1]

The application of binomial nomenclature is now governed by various internationally agreed codes of rules, of which the two most important are the International Code of Zoological Nomenclature (ICZN) for animals and the International Code of Nomenclature for algae, fungi, and plants (ICN). Although the general principles underlying binomial nomenclature are common to these two codes, there are some differences, both in the terminology they use and in their precise rules.

In modern usage, the first letter of the first part of the name, the genus, is always capitalized in writing, while that of the second part is not, even when derived from a proper noun such as the name of a person or place. Similarly, both parts are italicized when a binomial name occurs in normal text. Thus the binomial name of the annual phlox (named after botanist Thomas Drummond) is now written as Phlox drummondii.

In scientific works, the "authority" for a binomial name is usually given, at least when it is first mentioned, and the date of publication may be specified.

History

Carl Linnaeus (17071778), a Swedish botanist, invented the modern system of binomial nomenclature

Prior to the adoption of the modern binomial system of naming species, a scientific name consisted of a generic name combined with a specific name that was from one to several words long. Together they formed a system of polynomial nomenclature.[2] These names had two separate functions. First, to designate or label the species, and second, to be a diagnosis or description; however these two goals were eventually found to be incompatible.[3] In a simple genus, containing only two species, it was easy to tell them apart with a one-word genus and a one-word specific name; but as more species were discovered the names necessarily became longer and unwieldy, for instance Plantago foliis ovato-lanceolatus pubescentibus, spica cylindrica, scapo tereti ("Plantain with pubescent ovate-lanceolate leaves, a cylindric spike and a terete scape"), which we know today as Plantago media.

Such "polynomial names" may sometimes look like binomials, but are significantly different. For example, Gerard's herbal (as amended by Johnson) describes various kinds of spiderwort: "The first is called Phalangium ramosum, Branched Spiderwort; the second, Phalangium non ramosum, Unbranched Spiderwort. The other ... is aptly termed Phalangium Ephemerum Virginianum, Soon-Fading Spiderwort of Virginia".[4] The Latin phrases are short descriptions, rather than identifying labels.

The Bauhins, in particular Caspar Bauhin (1560–1624), took some important steps towards the binomial system, by pruning the Latin descriptions, in many cases to two words.[5] The adoption by biologists of a system of strictly binomial nomenclature is due to Swedish botanist and physician Carl von Linné, more commonly known by his Latinized name Carl Linnaeus (1707–1778). It was in his 1753 Species Plantarum that he first began consistently using a one-word "trivial name" together with a generic name in a system of binomial nomenclature.[6] This trivial name is what is now known as a specific epithet (ICN) or specific name (ICZN).[6] The Bauhins' genus names were retained in many of these, but the descriptive part was reduced to a single word.

Linnaeus's trivial names introduced an important new idea, namely that the function of a name could simply be to give a species a unique label. This meant that the name no longer need be descriptive; for example both parts could be derived from the names of people. Thus Gerard's phalangium ephemerum virginianum became Tradescantia virginiana, where the genus name honoured John Tradescant the younger,[note 1] an English botanist and gardener.[7] A bird in the parrot family was named Psittacus alexandri, meaning "Alexander's parrot", after Alexander the Great whose armies introduced eastern parakeets to Greece.[8] Linnaeus' trivial names were much easier to remember and use than the parallel polynomial names and eventually replaced them.[1]

Value

The value of the binomial nomenclature system derives primarily from its economy, its widespread use, and the uniqueness and stability of names it generally favors:

Problems

Binomial nomenclature for species has the effect that when a species is moved from one genus to another, not only is its genus name changed but sometimes its species name must be changed as well (e.g. because the name is already used in the new genus, or to agree in gender with the new genus). Some biologists have argued for the combination of the genus name and specific epithet into a single unambiguous name, or for the use of uninomials (as used in nomenclature of ranks above species).[17]

Relationship to classification and taxonomy

Nomenclature (including binomial nomenclature) is not the same as classification, although the two are related. Classification is the ordering of items into groups based on similarities and/or differences; in biological classification, species are one of the kinds of item to be classified.[18] In principle, the names given to species could be completely independent of their classification. This is not the case for binomial names, since the first part of a binomial is the name of the genus into which the species is placed. Above the rank of genus, binomial nomenclature and classification are partly independent; for example, a species retains its binomial name if it is moved from one family to another or from one order to another, unless it better fits a different genus in the same or different family, or it is split from its old genus and placed in a newly created genus. The independence is only partial since the names of families and other higher taxa are usually based on genera.

Taxonomy includes both nomenclature and classification. Its first stages (sometimes called "alpha taxonomy") are concerned with finding, describing and naming species of living or fossil organisms.[19] Binomial nomenclature is thus an important part of taxonomy as it is the system by which species are named. Taxonomists are also concerned with classification, including its principles, procedures and rules.[20]

Derivation of binomial names

A complete binomial name is always treated grammatically as if it were a phrase in the Latin language (hence the common use of the term "Latin name" for a binomial name). However, the two parts of a binomial name can each be derived from a number of sources, of which Latin is only one. These include:

The first part of the name, which identifies the genus, must be a word which can be treated as a Latin singular noun in the nominative case. It must be unique within each kingdom, but can be repeated between kingdoms. Thus Huia recurvata is an extinct species of plant, found as fossils in Yunnan, China,[29] whereas Huia masonii is a species of frog found in Java, Indonesia.[30]

The second part of the name, which identifies the species within the genus, is also treated grammatically as a Latin word. It can have one of a number of forms.

Whereas the first part of a binomial name must be unique within a kingdom, the second part is quite commonly used in two or more genera (as is shown by examples of hodgsonii above). The full binomial name must be unique within a kingdom.

Codes

From the early 19th century onwards it became ever more apparent that a body of rules was necessary to govern scientific names. In the course of time these became nomenclature codes. The International Code of Zoological Nomenclature (ICZN) governs the naming of animals,[32] the International Code of Nomenclature for algae, fungi, and plants (ICN) that of plants (including cyanobacteria), and the International Code of Nomenclature of Bacteria (ICNB) that of bacteria (including Archaea). Virus names are governed by the International Committee on Taxonomy of Viruses (ICTV), a taxonomic code, which determines taxa as well as names. These codes differ in certain ways, e.g.:

Unifying the different codes into a single code, the "BioCode", has been suggested, although implementation is not in sight. (There is also a code in development for a different system of classification which does not use ranks, but instead names clades. This is called the PhyloCode.)

Writing binomial names

By tradition, the binomial names of species are usually typeset in italics; for example, Homo sapiens.[37] Generally, the binomial should be printed in a font style different from that used in the normal text; for example, "Several more Homo sapiens fossils were discovered." When handwritten, each part of a binomial name should be underlined; for example, Homo sapiens.[38]

The first part of the binomial, the genus name, is always written with an initial capital letter. In current usage, the second part is never written with an initial capital.[39][40] Older sources, particularly botanical works published before the 1950s, use a different convention. If the second part of the name is derived from a proper noun, e.g. the name of a person or place, a capital letter was used. Thus the modern form Berberis darwinii was written as Berberis Darwinii. A capital was also used when the name is formed by two nouns in apposition, e.g. Panthera Leo or Centaurea Cyanus.[41][note 3]

When used with a common name, the scientific name often follows in parentheses, although this varies with publication.[42] For example, "The house sparrow (Passer domesticus) is decreasing in Europe."

The binomial name should generally be written in full. The exception to this is when several species from the same genus are being listed or discussed in the same paper or report, or the same species is mentioned repeatedly; in which case the genus is written in full when it is first used, but may then be abbreviated to an initial (and a period/full stop).[43] For example, a list of members of the genus Canis might be written as "Canis lupus, C. aureus, C. simensis". In rare cases, this abbreviated form has spread to more general use; for example, the bacterium Escherichia coli is often referred to as just E. coli, and Tyrannosaurus rex is perhaps even better known simply as T. rex, these two both often appearing in this form in popular writing even where the full genus name has not already been given.

The abbreviation "sp." is used when the actual specific name cannot or need not be specified. The abbreviation "spp." (plural) indicates "several species". These abbreviations are not italicised (or underlined).[44] For example: "Canis sp." means "an unspecified species of the genus Canis", while "Canis spp." means "two or more species of the genus Canis". (The abbreviations "sp." and "spp." can easily be confused with the abbreviations "ssp." (zoology) or "subsp." (botany), plurals "sspp." or "subspp.", referring to one or more subspecies. See trinomen (zoology) and infraspecific name.)

The abbreviation "cf." (i.e. confer in Latin) is used to compare individuals/taxa with known/described species. Conventions for use of the "cf." qualifier vary.[45] In paleontology, it is typically used when the identification is not confirmed.[46] For example, "Corvus cf. nasicus" was used to indicate "a fossil bird similar to the Cuban crow but not certainly identified as this species".[47] In molecular systematics papers, "cf." may be used to indicate one or more undescribed species assumed related to a described species. For example, in a paper describing the phylogeny of small benthic freshwater fish called darters, five undescribed putative species (Ozark, Sheltowee, Wildcat, Ihiyo, and Mamequit darters), notable for brightly colored nuptial males with distinctive color patterns,[48] were referred to as "Etheostoma cf. spectabile" because they had been viewed as related to, but distinct from, Etheostoma spectabile (orangethroat darter).[49] This view was supported in varying degrees by DNA analysis. The somewhat informal use of taxa names with qualifying abbreviations is referred to as open nomenclature and it is not subject to strict usage codes.

In some contexts the dagger symbol ("†") may be used before or after the binomial name to indicate that the species is extinct.

Authority

In scholarly texts, at least the first or main use of the binomial name is usually followed by the "authority" – a way of designating the scientist(s) who first published the name. The authority is written in slightly different ways in zoology and botany. For names governed by the ICZN the surname is usually written in full together with the date (normally only the year) of publication. The ICZN recommends that the "original author and date of a name should be cited at least once in each work dealing with the taxon denoted by that name."[50] For names governed by the ICN the name is generally reduced to a standard abbreviation and the date omitted. The International Plant Names Index maintains an approved list of botanical author abbreviations. Historically, abbreviations were used in zoology too.

When the original name is changed, e.g. the species is moved to a different genus, both Codes use parentheses around the original authority; the ICN also requires the person who made the change to be given. Some examples:

Other ranks

Binomial nomenclature, as described here, is a system for naming species. Implicitly it includes a system for naming genera, since the first part of the name of the species is a genus name. In a classification system based on ranks there are also ways of naming ranks above the level of genus and below the level of species. Ranks above genus (e.g., family, order, class) receive one-part names, which are conventionally not written in italics. Thus the house sparrow, Passer domesticus, belongs to the family Passeridae. Family names are normally based on genus names, although the endings used differ between zoology and botany.

Ranks below species receive three-part names, conventionally written in italics like the names of species. There are significant differences between the ICZN and the ICN. In zoology, the only rank below species is subspecies and the name is written simply as three parts (a trinomen). Thus one of the subspecies of the olive-backed pipit is Anthus hodgsoni berezowskii. In botany, there are many ranks below species and although the name itself is written in three parts, a "connecting term" (not part of the name) is needed to show the rank. Thus the American black elder is Sambucus nigra subsp. canadensis; the white-flowered form of the ivy-leaved cyclamen is Cyclamen hederifolium f. albiflorum.

See also

Notes

  1. Some sources say that both John Tradescant the younger and his father, John Tradescant the elder, were intended by Linnaeus.
  2. The ending "-on" may derive from the neuter Greek ending -ον, as in Rhodoxylon floridum, or the masculine Greek ending -ων, as in Rhodochiton atrosanguineus.
  3. The modern notation was resisted by some, partly because writing names like Centaurea cyanus can suggest that cyanus is an adjective which should agree with Centaurea, i.e. that the name should be Centaurea cyana, whereas Cyanus is derived from the Greek name for the cornflower. See Gilbert-Carter, H. (1955), Glossary of the British Flora (2nd ed.), Cambridge University Press, OCLC 559413416, p. xix.

    References

    1. 1 2 3 Knapp, Sandra, What's in a name? A history of taxonomy : Linnaeus and the birth of modern taxonomy, Natural History Museum, London, retrieved 17 June 2011
    2. Reddy, S.M. (2007), University botany: Angiosperms, plant embryology and plant physiology, New Age International, p. 34, ISBN 978-81-224-1547-6
    3. Blunt, Wilfrid (2004), Linnaeus: the compleat naturalist, Frances Lincoln ltd, p. 266, ISBN 978-0-7112-2362-2
    4. John Gerard and Thomas Johnson (1636). The Herball, or, Generall Historie of Plantes /gathered by John Gerarde of London, Master in Chirurgerie; very much enlarged and amended by Thomas Johnson, Citizen and Apothecarye of London. Adam Islip, Joice Norton and Richard Whitakers and the Biodiversity Heritage Library.
    5. 1 2 Johnson, A.T. & Smith, H.A. (1972), Plant Names Simplified : Their Pronunciation Derivation & Meaning, Buckenhill, Herefordshire: Landsmans Bookshop, ISBN 978-0-900513-04-6, p. v
    6. 1 2 Polaszek, Andrew (2009), Systema naturae 250: the Linnaean ark, CRC Press, p. 189, ISBN 978-1-4200-9501-2
    7. Hyam & Pankhurst 1995, p. 502
    8. Jobling, James A. (2010), Helm Dictionary of Scientific Bird Names, London: Christopher Helm, ISBN 978-1-4081-2501-4
    9. Van Dyke, Fred (2008), "Contemporary Issues of the Species Concept", Conservation biology: foundations, concepts, applications, Springer, p. 86, ISBN 978-1-4020-6890-4, retrieved 20 June 2011
    10. 1 2 Joan C. Stevenson (1991), Dictionary of concepts in physical anthropology, Greenwood Publishing Group, p. 53, ISBN 978-0-313-24756-9
    11. J. Vaun McArthur (2006), "Species Concepts and Speciation", Microbial ecology: an evolutionary approach, Academic Press, p. 36, ISBN 978-0-12-369491-1
    12. 1 2 Peter J. Russell, Stephen L. Wolfe, Paul E. Hertz, & Cecie Starr (2007), "Species Concepts and Speciation", The Linnaean System of Taxonomy, Volume 2, Cengage Learning, p. 493, ISBN 978-0-495-01033-3
    13. "General Principles of Taxonomy", Competition Science Vision (Pratiyogita Darpan Group) 10 (114), 2007: 764–767, retrieved 20 June 2011.
    14. Dashwood, Melanie & Mathew, Brian (2005), Hyacinthaceae – little blue bulbs (RHS Plant Trials and Awards, Bulletin Number 11), Royal Horticultural Society, archived from the original on 20 February 2011, retrieved 19 February 2011
    15. Bergmann, H.H. & Schottler, B. (2001), "Tenerife robin Erithacus (rubecula) superbus – a species of its own?", Dutch Birding 23: 140–146
    16. Patricia Sund, Taxonomy Explained, BirdChannel.com, retrieved 20 June 2011
    17. Cantino, P. D., H. D. Bryant, K. de Queiroz, M. J. Donoghue, T. Eriksson, D. M. Hillis, M. S. Y. Lee. 1999. Species names in phylogenetic nomenclature. Syst. Biol. 48:790–807.
    18. Simpson, Michael G. (2006), Plant Systematics, London: Elsevier Academic Press, ISBN 978-0-12-644460-5, p. 552
    19. Fortey, Richard (2008), Dry Store Room No. 1: The Secret Life of the Natural History Museum, London: Harper Perennial, ISBN 978-0-00-720989-7
    20. Davis, Peter H. & Heywood, Vernon H. (1965), Principles of Angiosperm Taxonomy, Edinburgh: Oliver & Boyd, p. 8
    21. Hyam, R. & Pankhurst, R.J. (1995), Plants and their names : a concise dictionary, Oxford: Oxford University Press, ISBN 978-0-19-866189-4, p. 428
    22. Hyam & Pankhurst 1995, p. 182
    23. Radio San Gabriel, "Instituto Radiofonico de Promoción Aymara" (IRPA) 1993, Republicado por Instituto de las Lenguas y Literaturas Andinas-Amazónicas (ILLLA-A) 2011, Transcripción del Vocabulario de la Lengua Aymara, P. Ludovico Bertonio 1612 (Spanish-Aymara-Aymara-Spanish dictionary)
    24. Teofilo Laime Ajacopa, Diccionario Bilingüe Iskay simipi yuyayk'ancha, La Paz, 2007 (Quechua-Spanish dictionary)
    25. Hyam & Pankhurst 1995, p. 303
    26. Childs, James E.; Paddock, Christopher D. (2003), "The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States", Annual Review of Entomology 48 (1): 307–337, doi:10.1146/annurev.ento.48.091801.112728, PMID 12414740
    27. Hyam & Pankhurst 1995, p. 329
    28. Isaak, Mark, Curiosities of Biological Nomenclature: Puns, archived from the original on 17 June 2011, retrieved 17 June 2011
    29. Geng, Bao-Yin (1985), "Huia recurvata – A New Plant from Lower Devonian of Southeastern Yunnan China", Acta Botanica Sinica (in Chinese and English) 27 (4): 419–426, retrieved 7 February 2011
    30. Iskandar, D. & Mumpuni, D. (2004), IUCN Red List of Threatened Species : Huia masonii, retrieved 19 June 2011
    31. Hyam & Pankhurst 1995, p. 334
    32. International Commission on Zoological Nomenclature (1999), International Code of Zoological Nomenclature online (4th ed.), The International Trust for Zoological Nomenclature, ISBN 978-0-85301-006-7, retrieved 20 June 2011
    33. McNeill, J.; Barrie, F.R.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworth, D.L.; Herendeen, P.S.; Knapp, S.; Marhold, K.; Prado, J.; Prud'homme Van Reine, W.F.; Smith, G.F.; Wiersema, J.H.; Turland, N.J. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. A.R.G. Gantner Verlag KG. ISBN 978-3-87429-425-6., Article 23
    34. Schmidt, Diane (2003), Guide to reference and information sources in the zoological sciences, Westport, Conn.: Libraries Unlimited, ISBN 978-1-56308-977-0, p. 4
    35. International Commission on Zoological Nomenclature 1999, Chap. 2, Article 5
    36. Sneath, P.H.A. (2003), A short history of the Bacteriological Code, International Union of Microbiological Societies, retrieved 20 June 2013
    37. "How to Write Scientific Names of Organisms" (PDF), Competition Science Vision (Assumption University Journal), retrieved 20 June 2011.
    38. Hugh T.W. Tan & Tan Kai-xin, Understanding and Learning Scientific Names of Species, Successful Learning, Center for Development of Teaching and Learning, National University of Singapore, retrieved 20 June 2011
    39. Silyn-Roberts, Heather (2000), Writing for Science and Engineering: Papers, Presentations and Reports, Oxford; Boston: Butterworth-Heinemann, ISBN 978-0-7506-4636-9, p. 198
    40. McNeill et al. 2006, Recommendation 60F
    41. Johnson & Smith 1972, p. 23
    42. Writing Guide, Macquarie University, retrieved 20 June 2011
    43. "Linnaean Nomenclature of Plants, Animals, & Bacteria", Merriam-Webster's collegiate dictionary, Merriam-Webster, Inc., 2003, p. 22a – 23a, ISBN 978-0-87779-809-5
    44. Matthew A. Jenks, Plant Nomenclature, Department of Horticulture and Landscape Architecture, Purdue University, retrieved 20 June 2011
    45. Chris Clowes, Taxonomy – A Primer, peripatus.gen.nz, retrieved 20 June 2011
    46. Bengtson, P. (1988), "Open nomenclature", Palaeontology 31 (1): 223-227, Retrieved 22 August 2014. Archived 6 October 2014 at the Wayback Machine.
    47. Orihuela, J. (2014), "Fossil Cuban crow "Corvus cf. nasicus" from a late Quaternary cave deposit in northern Matanzas, Cuba", Journal of Caribbean Ornithology 26: 12-16, Retrieved 22 August 2014.
    48. Page, L. M., & Burr, B. M. (1991), Peterson field guide to freshwater fishes: North America north of Mexico, Houghton Mifflin Harcourt, ISBN 978-0-547-24206-4, plate 52.
    49. Near, T. J., Bossu, C. M., Bradburd, G. S., Carlson, R. L., Harrington, R. C., Hollingsworth, P. R., Keck, B. P. & Etnier, D. A. (2011), "Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae)", Systematic Biology, 60(5): 565-595, Retrieved 22 August 2014.
    50. International Commission on Zoological Nomenclature 1999, Recommendation 51a.

    External links

    This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.