Branched-chain amino acid

A branched-chain amino acid (BCAA) is an amino acid having aliphatic side-chains with a branch (a central carbon atom bound to three or more carbon atoms). Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine and valine.[1] Non-proteinogenic BCAAs include norvaline and 2-aminoisobutyric acid.

The three proteinogenic BCAAs are among the nine essential amino acids for humans, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals.[2]

Research

Dietary BCAA supplementation has been used clinically to aid in the recovery of burn victims. A 2006 paper suggests that the concept of nutrition supplemented with all BCAAs for burns, trauma, and sepsis should be abandoned for a more promising leucine-only-supplemented nutrition that requires further evaluation. [3]

Dietary BCAAs have been used in an attempt to treat some cases of hepatic encephalopathy.[4] They can have the effect of alleviating symptoms, but there is no evidence they benefit mortality rates, nutrition or overall quality of life.[5]

Certain studies suggested a possible link between a high incidence of amyotrophic lateral sclerosis among professional American football players and Italian soccer players, and certain sports supplements including BCAAs.[6] In mouse studies, BCAAs were shown to cause cell hyper-excitability resembling that usually observed in ALS patients. The proposed underlying mechanism is that cell hyper-excitability results in increased calcium absorption by the cell and thus brings about cell death, specifically of neuronal cells which have particularly low calcium buffering capabilities.[6] Yet any link between BCAAs and ALS remains to be fully established. While BCAAs can induce a hyperexcitability similar to the one observed in mice with ALS, current work does not show if a BCAA-enriched diet, given over a prolonged period, actually induces ALS-like symptoms.[6]

Degradation

Degradation of branched-chain amino acids involves the branched-chain alpha-keto acid dehydrogenase complex (BCKDH). A deficiency of this complex leads to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products in the blood and urine, giving the condition the name maple syrup urine disease.

The BCKDH complex converts branched-chain amino acids into Acyl-CoA derivatives, which after subsequent reactions are converted either into acetyl-CoA or succinyl-CoA that enter the citric acid cycle.[7]

Enzymes involved are branched chain aminotransferase and 3-methyl-2-oxobutanoate dehydrogenase.

Claims in Bodybuilding

Bodybuilders make claims about the effectiveness of using BCAAs to aid recovery after a workout.[8] These claims[9] include prolonged mental and physical stamina[10] as well as a decrease in exercise-induced muscle breakdown and inflammation.[11] BCAAs are sold as bodybuilding supplements.[12]

See also

References

  1. Sowers, Strakie. "A Primer On Branched Chain Amino Acids" (PDF). Huntington College of Health Sciences. Retrieved 22 March 2011.
  2. Shimomura Y, Murakami T, Naoya Nakai N, Nagasaki M, Harris RA (2004). "Exercise Promotes BCAA Catabolism: Effects of BCAA Supplementation on Skeletal Muscle during Exercise". J. Nutr. 134 (6): 1583S–1587S. Retrieved 22 March 2011.
  3. De Bandt JP; Cynober L (2006). "Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis". J. Nutr. 1 Suppl 136 (30): 8S–13S. Retrieved 22 March 2011.
  4. Chadalavada R, Sappati Biyyani RS, Maxwell J, Mullen K. (2010). "Nutrition in hepatic encephalopathy". Nutr Clin Pract. 25 (3): 257–64. doi:10.1177/0884533610368712.
  5. Gluud LL, Dam G, Les I, Córdoba J, Marchesini G, Borre M, Aagaard NK, Vilstrup H. (2015). "Branched-chain amino acids for people with hepatic encephalopathy". Cochrane Database of Systematic Reviews. (2). doi:10.1002/14651858.CD001939.pub2.
  6. 1 2 3 Manuel, Marin; Heckman, C.J. (2011). "Stronger is not always better: Could a bodybuilding dietary supplement lead to ALS?". Experimental Neurology 228 (1): 5–8. doi:10.1016/j.expneurol.2010.12.007. ISSN 0014-4886.
  7. Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM, Chapman J, Subramaniam S (2009). "Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization". Proc. Natl. Acad. Sci. USA 106 (44): 18745–18750. doi:10.1073/pnas.0903032106. Retrieved 22 March 2011.
  8. "BCAA Supplements and Their Benefits". Macrospective. Retrieved 2016-03-23.
  9. Blomstrand, E.; Hassmén, P.; Ekblom, B.; Newsholme, E. A. (1991-01-01). "Administration of branched-chain amino acids during sustained exercise--effects on performance and on plasma concentration of some amino acids". European Journal of Applied Physiology and Occupational Physiology 63 (2): 83–88. ISSN 0301-5548. PMID 1748109.
  10. Howatson, Glyn; Hoad, Michael; Goodall, Stuart; Tallent, Jamie; Bell, Phillip G.; French, Duncan N. (2012-01-01). "Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study". Journal of the International Society of Sports Nutrition 9: 20. doi:10.1186/1550-2783-9-20. ISSN 1550-2783. PMC 3395580. PMID 22569039.

External links

This article is issued from Wikipedia - version of the Friday, April 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.