CYP2C9*13

Cytochrome P450 2C9 (CYP2C9), a member of the CYP2C enzyme subfamily, ranks amongst the most important drug metabolizing enzymes in humans.

Human CYP2C9 has been shown to exhibit genetic polymorphism. In addition to the wild-type protein CYP2C9*1, at least 30 single nucleotide polymorphisms (SNPs) have been reported within the coding region of the CYP2C9 gene producing the variant allozymes. CYP2C9*13 is one of them. It involves a T-to-C transversion at nucleotide position 269 causing a mutation at codon 90, which results in a Leu->Pro substitution. Frequency analysis indicated approximately 2% of the Chinese population carry the allele.[1][2]

CYP2C9*13 was found in Japanese and Korean,[3][4][5] too. CYP2C9*13 allele frequencies in East Asian populations is summarized in Table S of this paper.[6]

CYP2C9*13 allele was correlated with reduced plasma clearance of drugs that are substrates for CYP2C9.[7][8][9][10][11][12]

References

  1. Dayong, Si; Yingjie, Guo; Yifan, Zhang; Lei, Yang; Zhou; Dafang, Zhong (Jul 2004). "Identification of a novel variant CYP2C9 allele in Chinese" (PDF). Pharmacogenetics 14 (7): 465–9. doi:10.1097/01.fpc.0000114749.08559.e4.
  2. Yifan, Zhang; Dafang, Zhong; Dayong, Si; Yingjie, Guo; Xiaoyan, Chen; Hui, Zhou (Jan 2005). "Lornoxicam pharmacokinetics in relation to cytochrome P450 2C9 genotype" (PDF). The British Journal of Clinical Pharmacology 59 (1): 14–7. doi:10.1111/j.1365-2125.2005.02223.x.
  3. "Allele and genotype frequencies of CYP2C9 in a Korean population". Br J Clin Pharmacol 60 (4): 418–22. Oct 2005. doi:10.1111/j.1365-2125.2005.02448.x.
  4. Tong, YIN; Keiko, MAEKAWA; Kei, KAMIDE; Yoshiro, SAITO; Hironori, HANADA; Kotaro, MIYASHITA; Yoshihiro, KOKUBO; Yasuhisa, AKAIWA; Ryoichi, OTSUBO; Kazuyuki, NAGATSUKA; Toshiho, OTSUKI; Takeshi, HORIO; Shin, TAKIUCHI; Yuhei, KAWANO; Kazuo, MINEMATSU; Hiroaki, NARITOMI; Hitonobu, TOMOIKE; Jun-ichi, SAWADA; Toshiyuki, MIYATA (2008). "Genetic Variations of CYP2C9 in 724 Japanese Individuals and Their Impact on the Antihypertensive Effects of Losartan". Hypertens Res 31 (8): 1149–57. doi:10.1291/hypres.31.1549.
  5. "Frequency of CYP2C9 variant alleles, including CYP2C9*13 in a Korean population and effect on glimepiride pharmacokinetics". J Clin Pharm Ther. 37: 105–111. 2011. doi:10.1111/j.1365-2710.2010.01238.x.
  6. Si, Dayong; Wang, Juan; Zhang, Yifan; Zhong, Dafang; Zhou, Hui (2012). "Distribution of CYP2C9*13 allele in the Chinese Han and the long-range haplotype containing CYP2C9*13 and CYP2C19*2". Biopharmaceutics & Drug Disposition 33: 342–345. doi:10.1002/bdd.1804.
  7. Yingjie, Guo; Yifan, Zhang; Ying, Wang; Xiaoyan, Chen; Dayong, Si; Dafang, Zhong; Fawcett, JP; Zhou (Jun 2005). "Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in human" (PDF). Drug Metab Dispos 33 (6): 749–53. doi:10.1124/dmd.105.003616. PMID 15764711.
  8. Yingjie, Guo; Ying, Wang; Dayong, Si; Fawcett, PJ; Dafang, Zhong; Hui, Zhou (Sep 2005). "Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13" (PDF). Xenobiotica 35 (9): 853–861. doi:10.1080/00498250500256367.
  9. Yihan, Zhou; Qingchuan, Zheng; Li; Yuan, Zhang; Miao, Sun; Chia-Chung, Sun; Dayong, Si; Lei, Cai; Yingjie, Guo; Hui, Zhou (2006). "On the human CYP2C9 variant *13 activity reduction: a molecular, dynamics simulation and docking study" (PDF). Biochimie 88 (10): 1457–1465. doi:10.1016/j.biochi.2006.05.001.
  10. Li, Z; Wang, G; Wang, LS; Zhang, W; Tan, ZR; Fan, L; Chen, BL; Li, Q; Liu, J; Tu, JH; Hu, DL; Liu, ZQ; Zhou, HH (2009). "Effects of the CYP2C9*13 allele on the pharmacokinetics of losartan in healthy male subjects". Xenobiotica 39: 788–793. doi:10.1080/00498250903134435.
  11. Maekawa, K; Harakawa, N; Sugiyama, E; Tohkin, M; Kim, SR; Kaniwa, N; Katori, N; Hasegawa, R; Yasuda, K; Kamide, K; Miyata, T; Saito, Y; Sawada, JI (2009). "Substrate-dependent functional alterations of seven CYP2C9 variants found in Japanese subjects" (PDF). Drug Metab Dispos 37: 1895–1903. doi:10.1124/dmd.109.027003.
  12. Bae, JW; Choi, CI; Jang, CG; Lee, SY (Apr 2011). "Effects of CYP2C9*1/*13 on the pharmacokinetics and pharmacodynamics of meloxicam". Br J Clin Pharmacol 71 (4): 550–5. doi:10.1111/j.1365-2125.2010.03853.x.
This article is issued from Wikipedia - version of the Wednesday, January 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.