Cannabis drug testing

Cannabis drug testing describes various drug test methodologies for the use of cannabis in medicine, sport, and law. Cannabis use is highly detectable and can be detected by urinalysis, hair analysis, as well as saliva tests for days or weeks.

Unlike alcohol, for which impairment can be reasonably measured using a breathalyser (and confirmed with a blood alcohol content measurement), valid detection for cannabis is time-consuming, and tests cannot determine an approximate degree of impairment. The lack of suitable tests and agreed-upon intoxication levels is an issue in the legality of cannabis debate, especially regarding intoxicated driving.

The concentrations obtained from such analyses can often be helpful in distinguishing active use from passive exposure, elapsed time since use, and extent or duration of use.

The Duquenois-Levine test is commonly used as a screening test in the field, but it cannot definitively confirm the presence of cannabis, as a large range of substances have been shown to give false positives.

Biological timeline

Main article: Effects of cannabis

Most cannabinoids are lipophilic (fat soluble) compounds that easily store in fat, thus yielding a long elimination half-life relative to other recreational drugs. The THC molecule, and related compounds, are usually detectable in drug tests from 3 days up to 10 days according to Redwood Laboratories; heavy users can produce positive tests for up to 10 months after ceasing cannabis use. The length of time varies greatly according to metabolism, quantity, and frequency of use.

Testing methods

Urine testing

Marijuana use can be detected up to 2–5 days after exposure for infrequent users; for heavy users: 1–15 days; for chronic users and/or users with high body fat: 1–30 days[1][2]

Contamination of marijuana with lead, medically reported in the field as high as 50% by weight, will result in a core temperature in the joint of around 1200 °C in comparison to standard cigarette cut with a core temperature of around 700 °C or pipe cut (normal for marijuana) with a core temperature of around 500 °C, resulting in far greater THC absorption and can extend the detection time reliably to around 6 weeks. A responsible adult user of 5-10 grams per week will reach levels of over 500 ng/ml a couple days to weeks after use[3] in place of 150-200 and a single time user consuming just a couple of puffs will reach levels significantly over 50, though this has also been scientifically shown to be true of second hand marijuana smoke without lead exposure as well. This has been recorded in three occasions on a larger scale, in Massachusetts[4] and Germany,[5] and may occur in other areas as well.

Under the typical 50 ng/mL cutoff for THC in the United States, an occasional or on-off user would be very unlikely to test positive beyond 3–4 days since the last use, and a chronic user would be unlikely to test positive much beyond 7 days. Using a more sensitive cutoff of 20 ng/mL (less common but still used by some labs), the most likely maximum times are 7 days and 21 days, respectively.[6] In extraordinary circumstances of extended marijuana use, detection times of more than 30 days are possible in some individuals at the 20 ng/mL cutoff.[7]

However, one must remember that every individual is different, and detection times can vary due to metabolism or other factors. It also depends on whether actual THC or THC metabolites are being tested for, the latter having a much longer detection time than the former. THC (found in marijuana) may only be detectable in saliva/oral fluid for 2–24 hours in most cases.

The main metabolite excreted in the urine is 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (delta9-THC-COOH). Most THC drug tests yields a positive result when the concentration of marijuana in urine exceeds 50 ng/mL [8] Urine Testing is an immunoassay based test on the principle of competitive binding. Drugs which may be present in the urine specimen compete against their respective drug conjugate for binding sites on their specific antibody. During testing, a urine specimen migrates upward by capillary action. A drug, if present in the urine specimen below its cut-off concentration, will not saturate the binding sites of its specific antibody. The antibody will then react with the drug-protein conjugate and a visible colored line will show up in the test line region of the specific drug strip.[8]

Cannabis use is included in the "10-panel urine screen", as well as the "SAMHSA-5", the five drugs tested for in standard NIDA approved drug tests.

False positives have been known to be triggered by consuming hemp-seed bars and other products, although the more detailed, more expensive gas chromatography-mass spectrometer (GCMS) test can tell the difference.[9]

In 2011, researchers at John Jay College of Criminal Justice reported that dietary zinc supplements can mask the presence of THC and other drugs in urine. Similar claims have been made in web forums on that topic.[10] However, a 2013 study conducted by researchers at the University of Utah School of Medicine refute the possibility of self-administered zinc producing false-negative urine drug tests.[11]

Common known pharmaceutical drugs which cause false positives in instant THC dip tests include:[12][13]

Duquenois–Levine reagent

The Duquenois–Levine test is a simple chemical color reaction test initially developed in the 1930s by Pierre Duquénois.

To administer the test, a police officer simply has to break a seal on a tiny micropipette of chemicals, and insert a particle of the suspected substance; if the chemicals turn purple, this indicates the possibility of marijuana. But the color variations can be subtle, and readings can vary by examiner.

It was adopted in the 1950s by the United Nations as the preferred test for cannabis.

Hair testing

Cannabis use is detectable with hair tests and is generally included in the standard hair test. Hair tests generally take the most recent 1.5 inches of growth and use those for testing. That provides a detection period of approximately 90 days.[1] If an individual's hair is shorter than 1.5 inches, this detection period will be shorter. The detection window for body hair cannabis testing will be longer, because body hair grows slower than head hair and distorts the detection timeframe. Hair drug testing measures the marijuana parent metabolite embedded inside the hairshaft and eliminates external contamination as a source of a positive result. The detection window of hair drug testing for cannabis can be as low as 1 pg/mg.[14]

Saliva testing

Cannabis is detectable by saliva testing. Just like blood testing, saliva testing detects the presence of parent drugs and not their inactive metabolites. This results in a shorter window of detection for cannabis by saliva testing.[15] Delta 9 THC is the parent compound. If saliva sample is tested in a lab, the detection level can be as low as 0.5 ng/mL (up to 72 hours after intake)[16] and if an onsite instant saliva drug test is used, the cut off level is generally 50 ng/mL (up to 12 hours after intake).[17] Per National Institute on Drug Abuse saliva drug testing provides a reasonable alternative to other drug testing methods.[18]

Blood testing

Cannabis is detectable in the blood for approximately 12–24 hours, with heavy/frequent use detectable in the blood for up to 7 days.[19] Because they are invasive and difficult to administer, blood tests are used less frequently. They are typically used in investigations of accidents, injuries and DUIs.

Urine contains predominantly THC-COOH, while hair, oral fluid and sweat contain primarily THC. Blood may contain both substances, with the relative amounts dependent on the recency and extent of usage.[20][21][22]

Neurological testing

Though very unlikely to be used, and more unlikely in court, Electroencephalography or EEG shows somewhat more persistent alpha waves of slightly lower frequency than usual.[23] Cannabinoids produce a "marked depression of motor activity" via activation of neuronal cannabinoid receptors belonging to the CB1 subtype.[24]

Usage in law

While there are blood, urine and hair tests that can track marijuana’s active ingredient in the body, marijuana lingers around for too long a period in order for one of these tests to determine the actual intake time. Also, the variation between different metabolisms makes an objective cannabis intoxication test very difficult. Cannabis testing is common in intoxicated driving investigations, and also as in probation guidelines.

References

  1. 1 2 Erowid Cannabis (Marijuana) Vault: Drug Testing. Erowid.org (2010-02-28). Retrieved on August 7, 2011.
  2. Marijuana Detection Time Shorter Than Previously Assumed. norml.org (2006-02-23). Retrieved on March 13, 2012.
  3. platophilosphy.blogspot.com
  4. http://commonhealth.wbur.org/2015/06/lead-medical-marijuana-regulations
  5. nejm.org
  6. http://www.ndci.org/sites/default/files/ndci/THC_Detection_Window_0.pdf THE MARIJUANA DETECTION WINDOW: DETERMINING THE LENGTH OF TIME CANNABINOIDS WILL REMAIN DETECTABLE IN URINE FOLLOWING SMOKING A CRITICAL REVIEW OF RELEVANT RESEARCH AND CANNABINOID DETECTION GUIDANCE FOR DRUG COURTS By Paul L. Cary, M.S., National Drug Court Institute
  7. ndci.org
  8. 1 2 http://www.australiandrugtesting.com/#!technical-info/c14h4
  9. Good drugs guide
  10. Venkatratnam, Abhishek; Nathan H. Lents (July 2011). "Zinc Reduces the Detection of Cocaine, Methamphetamine, and THC by ELISA Urine Testing". Journal of Analytical Toxicology 35 (6): 333–340. doi:10.1093/anatox/35.6.333. PMID 21740689.
  11. Lin, Chia-Ni; Strathmann, Frederick (July 10, 2013). "Elevated Urine Zinc Concentration Reduces the Detection of Methamphetamine, Cocaine, THC and Opiates in Urine by EMIT" (PDF). Journal of Analytical Toxicology 37: 665–669. doi:10.1093/jat/bkt056.
  12. totalmarijuanadetox.com
  13. v
  14. "Hair drug testing question and answers" (PDF). Quest Diagnostics.
  15. "The ABCs of Marijuana and Drug Testing". NORML.org.
  16. "Journal of Analytical Toxicology, Vol 25, November/December 2002". Forensic Fluids Laboratory.
  17. "Instant saliva drug testing cut-off levels". testcountry.
  18. "Before the House Committee on Commerce, Subcommittee on Oversight and Investigations". NIDA. Retrieved 1998. Check date values in: |access-date= (help)
  19. "drug test detection". CANORML.org.
  20. Coulter, C; Taruc, M; Tuyay, J; Moore, C. "Quantitation of tetrahydrocannabinol in hair using immunoassay and liquid chromatography with tandem mass spectrometric detection". Drug Test. Anal. 1 (234–239): 2009.
  21. Schwope, DM; Milman, G; Huestis, MA (2010). "Validation of an enzyme immunoassay for detection and semiquantification of cannabinoids in oral fluid". Clin. Chem 56: 1007–1014. doi:10.1373/clinchem.2009.141754. PMC 3159868. PMID 20360126.
  22. Huestis MA, Scheidweiler KB, Saito T, Fortner N, Abraham T, Gustafson RA, Smith ML (2008). "Excretion of Δ9-Tetrahydrocannabinol in Sweat". Forensic Sci. Int. 174 (2–3): 173–177. doi:10.1016/j.forsciint.2007.04.002. PMC 2277330. PMID 17481836.
  23. H.K. Kalant & W.H.E. Roschlau (1998). Principles of Medical Pharmacology (6th ed.). pp. 373–375.
  24. Andersson, M.; Usiello, A; Borgkvist, A; Pozzi, L; Dominguez, C; Fienberg, AA; Svenningsson, P; Fredholm, BB; et al. (2005). "Cannabinoid Action Depends on Phosphorylation of Dopamine- and cAMP-Regulated Phosphoprotein of 32 kDa at the Protein Kinase A Site in Striatal Projection Neurons". Journal of Neuroscience 25 (37): 8432–8. doi:10.1523/JNEUROSCI.1289-05.2005. PMID 16162925.
This article is issued from Wikipedia - version of the Thursday, March 24, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.