Cell mechanics

Cell mechanics is a sub-field of biophysics that focuses on the mechanical properties and behavior of living cells and how it relates to cell function.[1] It encompasses aspects of cell biophysics, biomechanics, soft matter physics and rheology, mechanobiology and cell biology. Researchers who study cell mechanics are interested in the mechanics and dynamics of the assemblies and structures that make up the cell including membranes, cytoskeleton, organelles, and cytoplasm, and how they interact to give rise to the emergent properties of the cell as a whole.[2]
A particular focus of many cell mechanical studies has been the cytoskeleton, which (in animal cells) can be thought to consist of:
1) actomyosin assemblies (F-actin, myosin motors, and associated binding, nucleating, capping, stabilizing, and crosslinking proteins),
2) microtubules and their associated motor proteins (kinesins and dyneins),
3) intermediate filaments,
4) other assemblies such as spectrins and septins.
The active and dynamic nature of cellular assemblies makes them particularly interesting materials to investigate.[3] The active non-equilibrium and non-linear rheological properties of cellular assemblies have been keen point of research in recent times.[4][5] Another point of interest has been how cell cycle-related changes in cytoskeletal activity affect global cell properties, such as intracellular pressure increase during mitotic cell rounding.[6]

References

  1. Emad Moeendarbary and Andrew Harris (2014)."Cell mechanics: principles, practices, and prospects", Wiley Interdisciplinary Reviews: Systems Biology and Medicine. doi:10.1002/wsbm.1275
  2. Fletcher, Daniel A; Mullins, Dyche (28 January 2010). "Cell mechanics and the cytoskeleton". Nature 463: 485–492. doi:10.1038/nature08908. PMC 2851742. PMID 20110992.
  3. Kasza, Karen e; Rowat, Amy C; Liu, Jaiyu; Angelini, Thomas E; Brangwynne, Clifford P; Koenderink, Gijsje H; Weitz, David A (February 2007). "The cell as a material". Current Opinion in Cell Biology 16 (1): 101–107. doi:10.1016/j.ceb.2006.12.002.
  4. Mizuno, Daisuke; Tardin, Catherine; Schmidt, Christoph F; MacKintosh, Fred C (19 January 2007). "Nonequilibrium mechanics of active cytoskeletal networks". Science 315: 370–373. doi:10.1126/science.1134404.
  5. Guo, Ming; Ehrlicher, Allen J; Jensen, Mikkel H; Renz, Malte; Moore, Jeffrey R; Goldman, Robert D; Lippincott-Schwartz, Jennifer; Mackintosh, Fred C; Weitz, David A (14 August 2014). "Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy". Cell 158 (4): 822–832. doi:10.1016/j.cell.2014.06.051.
  6. Stewart, Martin P; Helenius, Jonne; Toyoda, Yusuke; Ramanathan, Subramanian P; Muller, Daniel J; Hyman, Anthony A (2 January 2011). "Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding". Nature 269: 226–230. doi:10.1038/nature09642. PMID 21196934.


This article is issued from Wikipedia - version of the Friday, January 08, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.