Ellipsoidal coordinates

Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Basic formulae

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates ( \lambda, \mu, \nu ) by the equations


x^{2} = \frac{\left( a^{2} + \lambda \right) \left( a^{2} + \mu \right) \left( a^{2} + \nu \right)}{\left( a^{2} - b^{2}  \right) \left( a^{2} - c^{2} \right)}

y^{2} = \frac{\left( b^{2} + \lambda \right) \left( b^{2} + \mu \right) \left( b^{2} + \nu \right)}{\left( b^{2} - a^{2}  \right) \left( b^{2} - c^{2} \right)}

z^{2} = \frac{\left( c^{2} + \lambda \right) \left( c^{2} + \mu \right) \left( c^{2} + \nu \right)}{\left( c^{2} - b^{2}  \right) \left( c^{2} - a^{2} \right)}

where the following limits apply to the coordinates


- \lambda < c^{2} < - \mu < b^{2} < -\nu < a^{2}.


Consequently, surfaces of constant \lambda are ellipsoids


\frac{x^{2}}{a^{2} + \lambda} +  \frac{y^{2}}{b^{2} + \lambda} + \frac{z^{2}}{c^{2} + \lambda} = 1,

whereas surfaces of constant \mu are hyperboloids of one sheet


\frac{x^{2}}{a^{2} + \mu} +  \frac{y^{2}}{b^{2} + \mu} + \frac{z^{2}}{c^{2} + \mu} = 1,

because the last term in the lhs is negative, and surfaces of constant \nu are hyperboloids of two sheets


\frac{x^{2}}{a^{2} + \nu} +  \frac{y^{2}}{b^{2} + \nu} + \frac{z^{2}}{c^{2} + \nu} = 1

because the last two terms in the lhs are negative.

Scale factors and differential operators

For brevity in the equations below, we introduce a function


S(\sigma) \ \stackrel{\mathrm{def}}{=}\  \left( a^{2} + \sigma \right) \left( b^{2} + \sigma \right) \left( c^{2} + \sigma \right)

where \sigma can represent any of the three variables (\lambda, \mu, \nu ). Using this function, the scale factors can be written


h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \mu \right) \left( \lambda - \nu\right)}{S(\lambda)}}

h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda\right) \left( \mu - \nu\right)}{S(\mu)}}

h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \lambda\right) \left( \nu - \mu\right)}{S(\nu)}}

Hence, the infinitesimal volume element equals


dV = \frac{\left( \lambda - \mu \right) \left( \lambda - \nu \right) \left( \mu - \nu\right)}{8\sqrt{-S(\lambda) S(\mu) S(\nu)}} \  d\lambda d\mu d\nu

and the Laplacian is defined by


\nabla^{2} \Phi = 
\frac{4\sqrt{S(\lambda)}}{\left( \lambda - \mu \right) \left( \lambda - \nu\right)}
\frac{\partial}{\partial \lambda} \left[ \sqrt{S(\lambda)} \frac{\partial \Phi}{\partial \lambda} \right] \  +  \
 
\frac{4\sqrt{S(\mu)}}{\left( \mu - \lambda \right) \left( \mu - \nu\right)}
\frac{\partial}{\partial \mu} \left[ \sqrt{S(\mu)} \frac{\partial \Phi}{\partial \mu} \right] \  + \  
\frac{4\sqrt{S(\nu)}}{\left( \nu - \lambda \right) \left( \nu - \mu\right)}
\frac{\partial}{\partial \nu} \left[ \sqrt{S(\nu)} \frac{\partial \Phi}{\partial \nu} \right]

Other differential operators such as \nabla \cdot \mathbf{F} and \nabla \times \mathbf{F} can be expressed in the coordinates (\lambda, \mu, \nu) by substituting the scale factors into the general formulae found in orthogonal coordinates.

See also

References

    Bibliography

    Unusual convention

    External links

    This article is issued from Wikipedia - version of the Sunday, May 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.