Derivation of self inductance

The mutual inductance by circuit i on circuit j is given by the double integral Neumann formula

  M_{ij} = \frac{\mu_0}{4\pi} \oint_{C_i}\oint_{C_j} \frac{\mathbf{ds}_i\cdot\mathbf{ds}_j}{|\mathbf{R}_{ij}|}

Derivation

  \Phi_{i} = \int_{S_i} \mathbf{B}\cdot\mathbf{da} = \int_{S_i} (\nabla\times\mathbf{A})\cdot\mathbf{da}
  = \oint_{C_i} \mathbf{A}\cdot\mathbf{ds} = \oint_{C_i} \left(\sum_{j}\frac{\mu_0 I_j}{4\pi} \oint_{C_j} \frac{\mathbf{ds}_j}{|\mathbf{R}|}\right) \cdot \mathbf{ds}_i

where

\Phi_i\ \, is the magnetic flux through the ith surface by the electrical circuit outlined by Cj
Ci is the enclosing curve of Si.
B is the magnetic field vector.
A is the vector potential. [1]

Stokes' theorem has been used.

 M_{ij} \ \stackrel{\mathrm{def}}{=}\  \frac{\Phi_{i}}{I_j} = \frac{\mu_0}{4\pi} \oint_{C_i}\oint_{C_j} \frac{\mathbf{ds}_i\cdot\mathbf{ds}_j}{|\mathbf{R}_{ij}|}

so that the mutual inductance is a purely geometrical quantity independent of the current in the circuits.

References

  1. Jackson, J. D. (1975). Classical Electrodynamics. Wiley. pp. 176, 263.
This article is issued from Wikipedia - version of the Saturday, October 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.