Food engineering

Bread factory in Germany

Food engineering is a multidisciplinary field of applied physical sciences which combines science, microbiology, and engineering education for food and related industries. Food engineering includes, but is not limited to, the application of agricultural engineering, mechanical engineering and chemical engineering principles to food materials. Food engineers provide the technological knowledge transfer essential to the cost-effective production and commercialization of food products and services. Physics, chemistry, and mathematics are fundamental to understanding and engineering products and operations in the food industry.[1]

Food engineering encompasses a wide range of activities. Food engineers are employed in food processing, food machinery, packaging, ingredient manufacturing, instrumentation, and control. Firms that design and build food processing plants, consulting firms, government agencies, pharmaceutical companies, and health-care firms also employ food engineers. Specific food engineering activities include:

Topics in food engineering

In the development of food engineering, one of the many challenges is to employ modern tools, technology, and knowledge, such as computational materials science and nanotechnology, to develop new products and processes. Simultaneously, improving quality, safety, and security remain critical issues in food engineering study. New packaging materials and techniques are being developed to provide more protection to foods, and novel preservation technology is emerging. Additionally, process control and automation regularly appear among the top priorities identified in food engineering.[2][3] Advanced monitoring and control systems are developed to facilitate automation and flexible food manufacturing. Furthermore, energy saving and minimization of environmental problems continue to be important food engineering issues, and significant progress is being made in waste management, efficient utilization of energy, and reduction of effluents and emissions in food production.

Typical topics include:

See also

References

  1. Singh , R Paul; Dennis R. Heldman (2013). Introduction to Food Engineering (5th ed.). Academic Press. p. 1. ISBN 0123985307.
  2. Grossi, M.; Lanzoni, M.; Lazzarini, R.; Riccò, B. (2012). "Automatici ce-cream characterization by impedance measurements for optimal machine setting". Measurement 45: 1747–1754. doi:10.1016/j.measurement.2012.04.009.
  3. Grossi, M.; Lazzarini, R.; Lanzoni, M.; Riccò, B. (2011). "A novel technique to control ice-cream freezing by electrical characteristics analysis". Journal of Food Engineering 106: 347–354. doi:10.1016/j.jfoodeng.2011.05.035.
  4. Mabrook, M.F.; Petty, M.C. (2003). "Effect of composition on the electrical conductance of milk". Journal of Food Engineering 60 (3): 321–325. doi:10.1016/S0260-8774(03)00054-2.
  5. Damez, J.L.; Clerion, S.; Abouelkaram, S.; Lepetit, J. (2008). "Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing". Journal of Food Engineering 85 (1): 116–122. doi:10.1016/j.jfoodeng.2007.07.026.
  6. Rehman, M.; Abu Izneid, J.A.; Abdullha, M.Z.; Arshad, M.R. (2011). "Assessment of quality of fruits using impedance spectroscopy". International Journal of Food Science & Technology 46 (6): 1303–1309. doi:10.1111/j.1365-2621.2011.02636.x.
  7. Harker, F.R.; Forbes, S.K. (1997). "Ripening and development of chilling injury in persimmon fruit: An electrical impedance study". New Zealand Journal of Crop and Horticultural Science 25 (2): 149–157. doi:10.1080/01140671.1997.9514001.
  8. Grossi, M.; Di Lecce, G.; Gallina Toschi, T.; Riccò, B. (2014). "Fast and accurate determination of olive oil acidity by electrochemical impedance spectroscopy". IEEE Sensors Journal 14 (9): 2947–2954. doi:10.1109/JSEN.2014.2321323.
  9. Grossi, M.; Di Lecce, G.; Gallina Toschi, T.; Riccò, B. (2014). "A novel electrochemical method for olive oil acidity determination". Microelectronics Journal 45: 1701–1707. doi:10.1016/j.mejo.2014.07.006.
This article is issued from Wikipedia - version of the Thursday, May 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.