Geometric Brownian motion

Two sample paths of Geometric Brownian motion, with different parameters. The blue line has larger drift, the green line has larger variance.

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift.[1] It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

Technical definition: the SDE

A stochastic process St is said to follow a GBM if it satisfies the following stochastic differential equation (SDE):

 dS_t = \mu S_t\,dt + \sigma S_t\,dW_t

where  W_t is a Wiener process or Brownian motion, and  \mu ('the percentage drift') and  \sigma ('the percentage volatility') are constants.

The former is used to model deterministic trends, while the latter term is often used to model a set of unpredictable events occurring during this motion.

Solving the SDE

For an arbitrary initial value S0 the above SDE has the analytic solution (under Itō's interpretation):

 S_t = S_0\exp\left( \left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t\right).

To arrive at this formula, we will divide the SDE by  S_t in order to have our choice random variable be on only one side. From there we write the previous equation in Itō integral form:

 \int_0^t \frac{d S_t}{S_t} = \mu \, t + \sigma\, W_t \,, \qquad\text{assuming }W_0=0\,.

Of course, \frac{d S_t}{S_t} looks related to the derivative of \ln S_t. However, S_t is an Itō process which requires the use of Itō calculus. Applying Itō's formula leads to

d(\ln S_t) = \frac{d S_t}{S_t} -\frac{1}{2} \,\frac{1}{S_t^2} \, dS_t dS_t

Where  dS_t dS_t is the quadratic variation of the SDE. This can also be written as d[S]_t or \left\langle S_.\right\rangle_t\,.. In this case we have:

  dS_t dS_t \, = \, \sigma^2 \, S_t^2 \, dt  .

Plugging the value of dS_t in the above equation and simplifying we obtain

\ln \frac{S_t}{S_0} = \left(\mu -\frac{\sigma^2}{2}\,\right) t + \sigma W_t\,.

Taking the exponential and multiplying both sides by S_0 gives the solution claimed above.

Properties

The above solution  S_t (for any value of t) is a log-normally distributed random variable with expected value and variance given by[2]

\mathbb{E}(S_t)= S_0e^{\mu  t},
\operatorname{Var}(S_t)= S_0^2e^{2\mu t} \left( e^{\sigma^2 t}-1\right),

that is the probability density function of a St is:

f_{S_t}(s; \mu, \sigma, t) = \frac{1}{\sqrt{2 \pi}}\, \frac{1}{s \sigma \sqrt{t}}\, \exp \left( -\frac{ \left( \ln s - \ln S_0 - \left( \mu - \frac{1}{2} \sigma^2 \right) t \right)^2}{2\sigma^2 t} \right).

When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. For example, consider the stochastic process log(St). This is an interesting process, because in the Black–Scholes model it is related to the log return of the stock price. Using Itō's lemma with f(S) = log(S) gives


\begin{alignat}{2}
d\log(S) & = f^\prime(S)\,dS + \frac{1}{2}f^{\prime\prime} (S)S^2\sigma^2 \, dt \\
& = \frac{1}{S} \left( \sigma S\,dW_t + \mu S\,dt\right) - \frac{1}{2}\sigma^2\,dt \\
&= \sigma\,dW_t +(\mu-\sigma^2/2)\,dt.
\end{alignat}

It follows that \mathbb{E} \log(S_t)=\log(S_0)+(\mu-\sigma^2/2)t.

This result can also be derived by applying the logarithm to the explicit solution of GBM:


\begin{alignat}{2}
\log(S_t) &=\log\left(S_0\exp\left(\left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t\right)\right)\\&
=\log(S_0)+\left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t.
\end{alignat}

Taking the expectation yields the same result as above: \mathbb{E} \log(S_t)=\log(S_0)+(\mu-\sigma^2/2)t.

Multivariate version

GBM can be extended to the case where there are multiple correlated price paths.

Each price path follows the underlying process

dS_{t}^i = \mu_i S_{t}^i\,dt + \sigma_i S_{t}^i\,dW_{t}^i,

where the Wiener processes are correlated such that  \mathbb{E}(dW_{t}^i dW_{t}^j) = \rho_{i,j} dt where \rho_{i,i} = 1.

For the multivariate case, this implies that

\mathrm{Cov}(S_{t}^i, S_{t}^j) = S_0^i S_0^j e^{(\mu_i + \mu_j) t }\left(e^{\rho_{i,j} \sigma_i \sigma_j t}-1\right).

Use in finance

Main article: Black–Scholes model

Geometric Brownian motion is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior.[3]

Some of the arguments for using GBM to model stock prices are:

However, GBM is not a completely realistic model, in particular it falls short of reality in the following points:

Extensions

In an attempt to make GBM more realistic as a model for stock prices, one can drop the assumption that the volatility (\sigma) is constant. If we assume that the volatility is a deterministic function of the stock price and time, this is called a local volatility model. If instead we assume that the volatility has a randomness of its own—often described by a different equation driven by a different Brownian Motion—the model is called a stochastic volatility model.

See also

References

  1. Ross, Sheldon M. (2014). "Variations on Brownian Motion". Introduction to Probability Models (11th ed.). Amsterdam: Elsevier. pp. 612–14. ISBN 978-0-12-407948-9.
  2. Oksendal, Bernt K. (2002), Stochastic Differential Equations: An Introduction with Applications, Springer, p. 326, ISBN 3-540-63720-6
  3. 1 2 Hull, John (2009). "12.3". Options, Futures, and other Derivatives (7 ed.).

External links

This article is issued from Wikipedia - version of the Thursday, February 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.