Great 120-cell
| Great 120-cell | |
|---|---|
![]() Orthogonal projection | |
| Type | Schläfli-Hess polytope |
| Cells | 120 {5,5/2} |
| Faces | 720 {5} |
| Edges | 720 |
| Vertices | 120 |
| Vertex figure | {5/2,5} |
| Schläfli symbol | {5,5/2,5} |
| Coxeter-Dynkin diagram | |
| Symmetry group | H4, [3,3,5] |
| Dual | self-dual |
| Properties | Regular |

Orthogonal projection as a wireframe
In geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes.
Related polytopes
It has the same edge arrangement as the 600-cell, icosahedral 120-cell as well as the same face arrangement as the grand 120-cell.
| H4 | - | F4 |
|---|---|---|
![]() [30] |
![]() [20] |
![]() [12] |
| H3 | A2 / B3 / D4 | A3 / B2 |
![]() [10] |
![]() [6] |
![]() [4] |
See also
- List of regular polytopes
- Convex regular 4-polytope
- Kepler-Poinsot solids regular star polyhedron
- Star polygon regular star polygons
References
- Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder .
- H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, Regular Star-polytopes, pp. 404–408)
- Richard Klitzing, 4D uniform polytopes (polychora), o3o5o5/2x - sishi
External links
| |||||||||||||||||||||||||||||||||||||||||||||||
This article is issued from Wikipedia - version of the Tuesday, April 21, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.






