Great snub icosidodecahedron

Great snub icosidodecahedron
TypeUniform star polyhedron
ElementsF = 92, E = 150
V = 60 (χ = 2)
Faces by sides(20+60){3}+12{5/2}
Wythoff symbol|2 5/2 3
Symmetry groupI, [5,3]+, 532
Index referencesU57, C88, W116
Dual polyhedronGreat pentagonal hexecontahedron
Vertex figure
34.5/2
Bowers acronymGosid

In geometry, the great snub icosidodecahedron is a nonconvex uniform polyhedron, indexed as U57. It can be represented by a Schläfli symbol sr{5/2,3}, and Coxeter-Dynkin diagram .

This polyhedron is the snub member of a family that includes the great icosahedron, the great stellated dodecahedron and the great icosidodecahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of a great snub icosidodecahedron are all the even permutations of

(±2α, ±2, ±2β),
(±(αβτ−1/τ), ±(α/τ+βτ), ±(−ατβ/τ−1)),
(±(ατβ/τ+1), ±(−αβτ+1/τ), ±(−α/τ+β+τ)),
(±(ατβ/τ−1), ±(α+βτ+1/τ), ±(−α/τ+βτ)) and
(±(αβτ+1/τ), ±(−α/τβτ), ±(−ατβ/τ+1)),

with an even number of plus signs, where

α = ξ−1/ξ

and

β = −ξ/τ+1/τ2−1/(ξτ),

where τ = (1+√5)/2 is the golden mean and ξ is the negative real root of ξ3−2ξ=−1/τ, or approximately −1.5488772. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one.

Related polyhedra

Great pentagonal hexecontahedron

Great pentagonal hexecontahedron
TypeStar polyhedron
Face
ElementsF = 60, E = 150
V = 92 (χ = 2)
Symmetry groupI, [5,3]+, 532
Index referencesDU57
dual polyhedronGreat snub icosidodecahedron

The great pentagonal hexecontahedron is a nonconvex isohedral polyhedron and dual to the uniform great snub icosidodecahedron. It has 60 intersecting irregular pentagonal faces, 120 edges, and 92 vertices.

See also

References

External links


This article is issued from Wikipedia - version of the Wednesday, September 24, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.