List of uniform polyhedra

In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.

This list includes these:

It was proven in 1970 that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered one more, by relaxing the condition that only two faces may meet at an edge. Some authors do not count it as a uniform polyhedron, because some pairs of edges coincide.

Not included are:

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

Convex uniform polyhedra

Name Picture Vertex
type
Wythoff
symbol
Sym. C# W# U# K# Vert. Ed. Fa. Χ Den. Faces by type
Tetrahedron
3.3.3
3 | 2 3 Td C15W001 U01 K06 4 6 4 2 1 4{3}
Triangular prism
3.4.4
2 3 | 2 D3hC33a -- U76a K01a 6 9 5 2 1 2{3}
+3{4}
Truncated tetrahedron
3.6.6
2 3 | 3 TdC16 W006 U02 K07 12 18 8 2 1 4{3}
+4{6}
Truncated cube
3.8.8
2 3 | 4 OhC21 W008 U09 K14 24 36 14 2 1 8{3}
+6{8}
Truncated dodecahedron
3.10.10
2 3 | 5 IhC29 W010 U26 K31 60 90 32 2 1 20{3}
+12{10}
Cube
4.4.4
3 | 2 4 OhC18 W003 U06 K11 8 12 6 2 1 6{4}
Pentagonal prism
4.4.5
2 5 | 2 D5hC33b -- U76b K01b 10 15 7 2 1 5{4}
+2{5}
Hexagonal prism
4.4.6
2 6 | 2 D6hC33c -- U76cK01c 12 18 8 2 1 6{4}
+2{6}
Octagonal prism
4.4.8
2 8 | 2 D8hC33e -- U76e K01e 16 24 10 2 1 8{4}
+2{8}
Decagonal prism
4.4.10
2 10 | 2 D10hC33g -- U76g K01g 20 30 12 2 1 10{4}
+2{10}
Dodecagonal prism
4.4.12
2 12 | 2 D12hC33i -- U76i K01i 24 36 14 2 1 12{4}
+2{12}
Truncated octahedron
4.6.6
2 4 | 3 OhC20 W007 U08 K13 24 36 14 2 1 6{4}
+8{6}
Truncated cuboctahedron
4.6.8
2 3 4 | OhC23 W015 U11 K16 48 72 26 2 1 12{4}
+8{6}
+6{8}
Truncated icosidodecahedron
4.6.10
2 3 5 | IhC31 W016 U28 K33 120 180 62 2 1 30{4}
+20{6}
+12{10}
Dodecahedron
5.5.5
3 | 2 5 IhC26 W005 U23 K28 20 30 12 2 1 12{5}
Truncated icosahedron
5.6.6
2 5 | 3 IhC27 W009 U25 K30 60 90 32 2 1 12{5}
+20{6}
Octahedron
3.3.3.3
4 | 2 3 Oh C17W002 U05 K10 6 12 8 2 1 8{3}
Square antiprism
3.3.3.4
| 2 2 4 D4dC34a -- U77a K02a 8 16 10 2 1 8{3}
+2{4}
Pentagonal antiprism
3.3.3.5
| 2 2 5 D5dC34b -- U77b K02b 10 20 12 2 1 10{3}
+2{5}
Hexagonal antiprism
3.3.3.6
| 2 2 6 D6dC34c -- U77c K02c 12 24 14 2 1 12{3}
+2{6}
Octagonal antiprism
3.3.3.8
| 2 2 8 D8dC34e -- U77e K02e 16 32 18 2 1 16{3}
+2{8}
Decagonal antiprism
3.3.3.10
| 2 2 10 D10dC34g -- U77gK02g 20 40 22 2 1 20{3}
+2{10}
Dodecagonal antiprism
3.3.3.12
| 2 2 12 D12dC34i -- U77iK02i 24 48 26 2 1 24{3}
+2{12}
Cuboctahedron
3.4.3.4
2 | 3 4 OhC19 W011 U07 K12 12 24 14 2 1 8{3}
+6{4}
Rhombicuboctahedron
3.4.4.4
3 4 | 2 OhC22 W013 U10 K15 24 48 26 2 1 8{3}
+(6+12){4}
Rhombicosidodecahedron
3.4.5.4
3 5 | 2 IhC30 W014 U27 K32 60 120 62 2 1 20{3}
+30{4}
+12{5}
Icosidodecahedron
3.5.3.5
2 | 3 5 IhC28 W012 U24 K29 30 60 32 2 1 20{3}
+12{5}
Icosahedron
3.3.3.3.3
5 | 2 3 IhC25 W004 U22 K27 12 30 20 2 1 20{3}
Snub cube
3.3.3.3.4
| 2 3 4 OC24 W017 U12 K17 24 60 38 2 1 (8+24){3}
+6{4}
Snub dodecahedron
3.3.3.3.5
| 2 3 5 IC32 W018 U29 K34 60 150 92 2 1 (20+60){3}
+12{5}

Uniform star polyhedra

Name Image Wyth
sym
Vert.
fig
Sym. C#W# U# K# Vert. Ed. Faces Chi Dens. Faces by type
Octahemioctahedron 3/2 3 | 3
6.3/2.6.3
Oh C37W068 U03 K08 12 24 12 0   8{3}+4{6}
Tetrahemihexahedron 3/2 3 | 2
4.3/2.4.3
Td C36W067 U04 K09 6 12 7 1   4{3}+3{4}
Cubohemioctahedron 4/3 4 | 3
6.4/3.6.4
Oh C51W078 U15 K20 12 24 10 -2   6{4}+4{6}
Great
dodecahedron
5/2 | 2 5
(5.5.5.5.5)/2
Ih C44W021 U35 K40 12 30 12 -6 3 12{5}
Great
icosahedron
5/2 | 2 3
(3.3.3.3.3)/2
Ih C69W041 U53 K58 12 30 20 2 7 20{3}
Great
ditrigonal
icosidodecahedron
3/2 | 3 5
(5.3.5.3.5.3)/2
Ih C61W087 U47 K52 20 60 32 -8 6 20{3}+12{5}
Small
rhombihexahedron
2 4 (3/2 4/2) |
4.8.4/3.8
Oh C60W086 U18 K23 24 48 18 -6   12{4}+6{8}
Small
cubicuboctahedron
3/2 4 | 4
8.3/2.8.4
Oh C38W069 U13 K18 24 48 20 -4 2 8{3}+6{4}+6{8}
Great
rhombicuboctahedron
3/2 4 | 2
4.3/2.4.4
Oh C59W085 U17 K22 24 48 26 2 5 8{3}+(6+12){4}
Small dodecahemi-
dodecahedron
5/4 5 | 5
10.5/4.10.5
Ih C65W091 U51 K56 30 60 18 -12   12{5}+6{10}
Great dodecahem-
icosahedron
5/4 5 | 3
6.5/4.6.5
IhC81 W102 U65 K70 30 60 22 -8   12{5}+10{6}
Small icosihemi-
dodecahedron
3/2 3 | 5
10.3/2.10.3
Ih C63W089 U49 K54 30 60 26 -4   20{3}+6{10}
Small
dodecicosahedron
3 5 (3/2 5/4) |
10.6.10/9.6/5
Ih C64W090 U50 K55 60 120 32 -28   20{6}+12{10}
Small
rhombidodecahedron
2 5 (3/2 5/2) |
10.4.10/9.4/3
Ih C46W074 U39 K44 60 120 42 -18   30{4}+12{10}
Small dodecicosi-
dodecahedron
3/2 5 | 5
10.3/2.10.5
IhC42 W072 U33 K38 60 120 44 -16 2 20{3}+12{5}+12{10}
Rhombicosahedron 2 3 (5/4 5/2) |
6.4.6/5.4/3
IhC72 W096 U56 K61 60 120 50 -10   30{4}+20{6}
Great
icosicosi-
dodecahedron
3/2 5 | 3
6.3/2.6.5
Ih C62W088 U48 K53 60 120 52 -8 6 20{3}+12{5}+20{6}
Pentagrammic
prism
2 5/2 | 2
5/2.4.4
D5h C33b -- U78a K03a 10 15 7 2 2 5{4}+2{5/2}
Heptagrammic
prism (7/2)
2 7/2 | 2
7/2.4.4
D7h C33d -- U78b K03b 14 21 9 2 2 7{4}+2{7/2}
Heptagrammic
prism (7/3)
2 7/3 | 2
7/3.4.4
D7h C33d -- U78c K03c 14 21 9 2 3 7{4}+2{7/3}
Octagrammic
prism
2 8/3 | 2
8/3.4.4
D8h C33e -- U78d K03d 16 24 10 2 3 8{4}+2{8/3}
Pentagrammic antiprism | 2 2 5/2
5/2.3.3.3
D5h C34b -- U79a K04a 10 20 12 2 2 10{3}+2{5/2}
Pentagrammic
crossed-antiprism
| 2 2 5/3
5/3.3.3.3
D5d C35a-- U80a K05a 10 20 12 2 3 10{3}+2{5/2}
Heptagrammic
antiprism (7/2)
| 2 2 7/2
7/2.3.3.3
D7hC34d--U79bK04b1428162314{3}+2{7/2}
Heptagrammic
antiprism (7/3)
| 2 2 7/3
7/3.3.3.3
D7dC34d--U79cK04c1428162314{3}+2{7/3}
Heptagrammic
crossed-antiprism
| 2 2 7/4
7/4.3.3.3
D7hC35b--U80bK05b1428162414{3}+2{7/3}
Octagrammic
antiprism
| 2 2 8/3
8/3.3.3.3
D8dC34e--U79dK04d1632182316{3}+2{8/3}
Octagrammic
crossed-antiprism
| 2 2 8/5
8/5.3.3.3
D8dC35c--U80cK05c1632182516{3}+2{8/3}
Small
stellated
dodecahedron
5 | 2 5/2
(5/2)5
Ih C43W020 U34 K39 12 30 12 -6 3 12{5/2}
Great
stellated
dodecahedron
3 | 2 5/2
(5/2)3
Ih C68W022 U52 K57 20 30 12 2 7 12{5/2}
Ditrigonal
dodeca-
dodecahedron
3 | 5/3 5
(5/3.5)3
Ih C53W080 U41 K46 20 60 24 -16 4 12{5}+12{5/2}
Small
ditrigonal
icosidodecahedron
3 | 5/2 3
(5/2.3)3
Ih C39W070 U30 K35 20 60 32 -8 2 20{3}+12{5/2}
Stellated
truncated
hexahedron
2 3 | 4/3
8/3.8/3.3
Oh C66W092 U19 K24 24 36 14 2 7 8{3}+6{8/3}
Great
rhombihexahedron
2 4/3 (3/2 4/2) |
4.8/3.4/3.8/5
Oh C82W103 U21 K26 24 48 18 -6   12{4}+6{8/3}
Great
cubicuboctahedron
3 4 | 4/3
8/3.3.8/3.4
Oh C50W077 U14 K19 24 48 20 -4 4 8{3}+6{4}+6{8/3}
Great dodecahemi-
dodecahedron
5/35/2 | 5/3
10/3.5/3.10/3.5/2
Ih C86W107 U70 K75 30 60 18 -12   12{5/2}+6{10/3}
Small dodecahemi-
cosahedron
5/35/2 | 3
6.5/3.6.5/2
Ih C78W100 U62 K67 30 60 22 -8   12{5/2}+10{6}
Dodeca-
dodecahedron
2 | 5/2 5
(5/2.5)2
Ih C45W073 U36 K41 30 60 24 -6 3 12{5}+12{5/2}
Great icosihemi-
dodecahedron
3/2 3 | 5/3
10/3.3/2.10/3.3
Ih C85W106 U71 K76 30 60 26 -4   20{3}+6{10/3}
Great
icosidodecahedron
2 | 5/2 3
(5/2.3)2
Ih C70W094 U54 K59 30 60 32 2 7 20{3}+12{5/2}
Cubitruncated
cuboctahedron
4/3 3 4 |
8/3.6.8
Oh C52W079 U16 K21 48 72 20 -4 4 8{6}+6{8}+6{8/3}
Great
truncated
cuboctahedron
4/3 2 3 |
8/3.4.6/5
Oh C67W093 U20 K25 48 72 26 2 1 12{4}+8{6}+6{8/3}
Truncated
great
dodecahedron
2 5/2 | 5
10.10.5/2
Ih C47W075 U37 K42 60 90 24 -6 3 12{5/2}+12{10}
Small stellated
truncated
dodecahedron
2 5 | 5/3
10/3.10/3.5
Ih C74W097 U58 K63 60 90 24 -6 9 12{5}+12{10/3}
Great stellated
truncated
dodecahedron
2 3 | 5/3
10/3.10/3.3
Ih C83W104 U66 K71 60 90 32 2 13 20{3}+12{10/3}
Truncated
great
icosahedron
2 5/2 | 3
6.6.5/2
Ih C71W095 U55 K60 60 90 32 2 7 12{5/2}+20{6}
Great
dodecicosahedron
3 5/3(3/2 5/2) |
6.10/3.6/5.10/7
Ih C79W101 U63 K68 60 120 32 -28   20{6}+12{10/3}
Great
rhombidodecahedron
2 5/3 (3/2 5/4) |
4.10/3.4/3.10/7
Ih C89W109 U73 K78 60 120 42 -18   30{4}+12{10/3}
Icosidodeca-
dodecahedron
5/3 5 | 3
6.5/3.6.5
Ih C56W083 U44 K49 60 120 44 -16 4 12{5}+12{5/2}+20{6}
Small ditrigonal
dodecicosi-
dodecahedron
5/3 3 | 5
10.5/3.10.3
Ih C55W082 U43 K48 60 120 44 -16 4 20{3}+12{;5/2}+12{10}
Great ditrigonal
dodecicosi-
dodecahedron
3 5 | 5/3
10/3.3.10/3.5
Ih C54W081 U42 K47 60 120 44 -16 4 20{3}+12{5}+12{10/3}
Great
dodecicosi-
dodecahedron
5/2 3 | 5/3
10/3.5/2.10/3.3
Ih C77W099 U61 K66 60 120 44 -16 10 20{3}+12{5/2}+12{10/3}
Small icosicosi-
dodecahedron
5/2 3 | 3
6.5/2.6.3
Ih C40W071 U31 K36 60 120 52 -8 2 20{3}+12{5/2}+20{6}
Rhombidodeca-
dodecahedron
5/2 5 | 2
4.5/2.4.5
Ih C48W076 U38 K43 60 120 54 -6 3 30{4}+12{5}+12{5/2}
Great
rhombicosi-
dodecahedron
5/3 3 | 2
4.5/3.4.3
Ih C84W105 U67 K72 60 120 62 2 13 20{3}+30{4}+12{5/2}
Icositruncated
dodeca-
dodecahedron
5/3 3 5 |
10/3.6.10
Ih C57W084 U45 K50 120 180 44 -16 4 20{6}+12{10}+12{10/3}
Truncated
dodeca-
dodecahedron
5/3 2 5 |
10/3.4.10/9
Ih C75W098 U59 K64 120 180 54 -6 3 30{4}+12{10}+12{10/3}
Great
truncated
icosidodecahedron
5/3 2 3 |
10/3.4.6
Ih C87W108 U68 K73 120 180 62 2 13 30{4}+20{6}+12{10/3}
Snub dodeca-
dodecahedron
| 2 5/2 5
3.3.5/2.3.5
I C49W111 U40 K45 60 150 84 -6 3 60{3}+12{5}+12{5/2}
Inverted
snub dodeca-
dodecahedron
| 5/3 2 5
35/3.3.3.5
I C76W114 U60 K65 60 150 84 -6 9 60{3}+12{5}+12{5/2}
Great
snub
icosidodecahedron
| 2 5/2 3
34.5/2
I C73W116 U57 K62 60 150 92 2 7 (20+60){3}+12{5/2}
Great
inverted
snub
icosidodecahedron
| 5/3 2 3
33.5/3
I C88W113 U69 K74 60 150 92 2 13 (20+60){3}+12{5/2}
Great
retrosnub
icosidodecahedron
| 3/25/3 2
(34.5/2)/2
I C90W117 U74 K79 60 150 92 2 37 (20+60){3}+12{5/2}
Great
snub
dodecicosi-
dodecahedron
| 5/35/2 3
33.5/3.3.5/2
I C80W115 U64 K69 60 180 104 -16 10 (20+60){3}+(12+12){5/2}
Snub
icosidodeca-
dodecahedron
| 5/3 3 5
33.5.5/3
I C58W112 U46 K51 60 180 104 -16 4 (20+60){3}+12{5}+12{5/2}
Small snub icos-
icosidodecahedron
| 5/2 3 3
35.5/2
Ih C41W110 U32 K37 60 180 112 -8 2 (40+60){3}+12{5/2}
Small retrosnub
icosicosi-
dodecahedron
| 3/23/25/2
(35.5/3)/2
Ih C91W118 U72 K77 60 180 112 -8 38 (40+60){3}+12{5/2}
Great
dirhombicosi-
dodecahedron
| 3/25/3 3 5/2
(4.5/3.4.3.
4.5/2.4.3/2)/2
Ih C92W119 U75 K80 60 240 124 -56   40{3}+60{4}+24{5/2}

Special case

Name
Bowers-style acronym
Picture Wythoff
symbol
Vertex figure Symmetry
group
C#W# U# K# Vertices Edges Faces Chi Density Faces by type
Great disnub dirhombidodecahedron | (3/2) 5/3 (3) 5/2
(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2
Ih ---- -- -- 60 240 (*) 204 24   120{3}+60{4}+24{5/2}

(*) : The great disnub dirhombidodecahedron has 120 of its 240 edges shared by four faces. If these 120 edges counted as two pairs of coincident edges, each shared by two faces, then there are a total of 360 edges, and the Euler characteristic becomes −96. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.

Column key

References

External links

This article is issued from Wikipedia - version of the Friday, March 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.