Hardy–Littlewood inequality

In mathematical analysis, the Hardy–Littlewood inequality, named after G. H. Hardy and John Edensor Littlewood, states that if f and g are nonnegative measurable real functions vanishing at infinity that are defined on n-dimensional Euclidean space Rn then

\int_{\mathbb{R}^n} f(x)g(x) \, dx \leq \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx

where f* and g* are the symmetric decreasing rearrangements of f(x) and g(x), respectively.[1][2]

Proof

From layer cake representation we have:[1][2]

f(x)= \int_0^\infty \chi_{f(x)>r} \, dr
g(x)= \int_0^\infty \chi_{g(x)>s} \, ds

where \chi_{f(x)>r} denotes the indicator function of the subset E f given by

E_f=\left\{x\in X: f(x)>r\right\} \,

Analogously, \chi_{g(x)>s} denotes the indicator function of the subset E g given by

E_g=\left\{x\in X: g(x)>s\right\} \,

\int_{\mathbb{R}^n} f(x)g(x) \, dx = \displaystyle\int_{\mathbb{R}^n}\int_0^\infty \int_0^\infty \chi_{f(x)>r}\chi_{g(x)>s} \, dr \, ds \, dx
= \int_0^\infty \int_0^\infty \int_{\mathbb{R}^n}\chi_{f(x)>r\cap g(x)>s} \, dx \, dr \, ds
= \int_0^\infty \int_0^\infty \mu\left(\left\{f(x)>r\right\}\cap\left\{ g(x)>s\right\}\right) \, dr \, ds
\leq \int_0^\infty \int_0^\infty \min\left(\mu\left(f(x)>r\right);\mu\left(g(x)>s\right)\right) \, dr \, ds
= \int_0^\infty \int_0^\infty \min\left(\mu\left(f^*(x)>r\right);\mu\left(g^*(x)>s\right)\right) \, dr \, ds
= \int_0^\infty \int_0^\infty \mu\left(\left\{f^\ast(x)>r\right\}\cap\left\{ g^\ast(x)>s\right\}\right) \, dr \, ds
= \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx

See also

References

  1. 1 2 Lieb, Elliott; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics 14 (2nd ed.). American Mathematical Society. ISBN 978-0821827833.
  2. 1 2 Burchard, Almut. A Short Course on Rearrangement Inequalities (PDF).
This article is issued from Wikipedia - version of the Tuesday, January 27, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.