Heinz Billing

Heinz Billing

Heinz Billing in 2012
Born (1914-04-07) April 7, 1914[1]
Salzwedel, Saxony-Anhalt,Germany
Citizenship Germany
Fields Physics
Computer science
Experimental Gravitation
Institutions Aerodynamic Test Centre at Göttingen[2]
Max Planck Institute for Astrophysics
Max Planck Institute for Physics
Alma mater University of Göttingen
Doctoral advisor Walter Gerlach
Eduard Rüchardt
Known for Prototype laser interferometric gravitational wave detector
Data storage device
Notable awards Konrad Zuse Medal (1987)

Heinz Billing (born April 7, 1914) is a German physicist and computer scientist, widely considered a pioneer in the construction of computer systems, computer data storage and built prototype laser interferometric gravitational wave detector.[2]

Biography

Billing was born in Salzwedel, in Saxony-Anhalt, Germany. After studying mathematics and physics in University of Göttingen he received his doctorate in 1938 in Munich at the age of 24.

On 3 October 1943 he married Anneliese Oetker. Billing has three children: Heiner Erhard Billing (born November 18, 1944 in Salzwedel), Dorit Gerda Gronefeld Billing (born June 27, 1946 in Göttingen) and Arend Gerd Billing (born September 19, 1954 in Göttingen).

Computer science

Billing worked at the Aerodynamic Research Institute in Göttingen, where he invented the magnetic drum memory.[2]

According to Billing's memoirs, published by Genscher, Düsseldorf (1997), there was a meeting between Alan Turing and Konrad Zuse.[3] It took place in Göttingen in 1947. The interrogation had the form of a colloquium. Participants were Womersley, Turing, Porter from England and a few German researchers like Zuse, Walther, and Billing. (For more details see Herbert Bruderer, Konrad Zuse und die Schweiz).

After a brief stay at the University of Sydney, Billing returned to join the Max Planck Institute for Physics in 1951. From 1952 through 1961 the group under Billing's direction constructed a series of four digital computers: the G1, G2, G1a, and G3.

He is the designer of the first German sequence-controlled electronic digital computer as well as of the first German program-stored electronic digital computer.[3]

Gravitational wave detector

After transistors had been firmly established, when microelectronics arrived, after scientific computers were slowly overshadowed by commercial applications and computers were mass-produced in factories, Heinz Billing left the computer field in which he had been a pioneer for nearly 30 years.[2]

In 1972, Billing returned to his original field of physics, at the Max Planck Institute's new location at Garching near Munich.[4] Beginning in 1972, Heinz Billing became involved in gravitational physics, when he tried to verify the detection claims made by American physicist Joseph Weber. Weber's results were considered to be proven wrong by these experiments.[5]

In 1975, Billing acted on a proposal by Rainer Weiss from the Massachusetts Institute of technology (MIT) to use laser interferometry to detect gravitational waves. He and colleagues built a 3m prototype Michelson interferometer using optical delay lines.[6] From 1980 onward Billing commissioned the development and construction in MPA in Garching of a laser interferometer with an arm length of 30m. Without the knowledge gained from this prototype, the LIGO project would not have been started when it did.[5][7][8][9][10]

Awards and honors

In 1987, Heinz Billing received the Konrad Zuse Medal for the invention of the magnetic drum storage. In 2015 he received the Order of Merit of the Federal Republic of Germany.

In 1993, the annual Heinz Billing prize for "outstanding contributions to computational science" was established by the Max Planck Society in his honor, with a prize amount of 5000 Euro.[11]

Selected publications

References

  1. "Computerpionier Heinz Billing feiert 100. Geburtstag". Detlef Borchers (in German). heise.de. 7 April 2014. Retrieved 21 February 2016.
  2. 1 2 3 4 J. A. N. Lee (1995). "Heinz Billing". Computer pioneers. IEEE Computer Society. ISBN 0-8186-6357-X. Retrieved 21 February 2016.
  3. 1 2 Herbert Bruderer. "Did Alan Turing interrogate Konrad Zuse in Göttingen in 1947?" (PDF). Retrieved 21 February 2016.
  4. "Wer? (Heinz Billing on magnetic storage drum)" (PDF).
  5. 1 2 "Computer and gravitational wave astronomy pioneer Heinz Billing celebrates his 100th birthday". Benjamin Knispel. GEO600.org. 7 April 2014. Retrieved 21 February 2016.
  6. Jim Hough and Sheila Rowan (2005). "Laser interferometry for the detection of gravitational waves" (PDF). Journal of Optics A: Pure and Applied Optics 7: S257-S264. doi:10.1088/1464-4258/7/6/001.
  7. "Q&A: Rainer Weiss on LIGO’s origins". news.mit.edu. Retrieved 21 February 2016.
  8. Albrecht Rüdiger. "In memoriam Jürgen Ehlers" (PDF). aei.mpg.de. Retrieved 21 February 2016.
  9. H. Billing, K. Maischberger, A. Rüdiger, R. Schilling, L. Schnupp and W. Winkler (1979). "An argon laser interferometer for the detection of gravitational radiation". Journal of Physics E: Scientific Instruments 12 (11): 1043-1050.
  10. D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, and A. Rüdiger (1988). "Noise behavior of the Garching 30-meter prototype gravitational-wave detector". Phys. Rev. D 38 (2): 423-432. doi:10.1103/PhysRevD.38.423.
  11. "The Heinz Billing Prize for the Advancement of Scientific computing". MPG.

External link

This article is issued from Wikipedia - version of the Wednesday, March 30, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.