Homoisoflavonoid

Chemical structure of the 3,4-dihydroxyhomoisoflavan sappanol.

Homoisoflavonoids (3-benzylidenechroman-4-ones) are a type of phenolic compounds[1] occurring naturally in plants.

Chemically, they have the general structure of a 16-carbon skeleton, which consists of two phenyl rings (A and B) and heterocyclic ring (C).

Synthesis

Homoisoflavones can be synthetized from 2'-hydroxydihydrochalcones.[2]

Homoisoflavanones can be synthetized[3] from 3,5-methoxy phenols via chroman-4-one in three steps[4] or from phloroglucinol.[5]

Conversion

Homoisoflavanes can be obtained from the conversion of homoisoflavonoids.[6]

Natural occurrences

The homoisoflavonoids portulacanones A, B, C and D can be found in Portulaca oleracea (common purslane, Caryophyllales, Portulacaceae).[7]

The 3,4-dihydroxyhomoisoflavans sappanol, episappanol, 3'-deoxysappanol, 3'-O-methylsappanol and 3'-O-methylepisappanol can be found in Caesalpinia sappan.[8]

The homoisoflavones scillavones A and B can be isolated from the bulbs of Scilla scilloides (Barnardia japonica).[9]

Homoisoflavanones

Chemical structure of sappanone A.

Homoisoflavanones (3-Benzyl-4-chromanones[10]) can be found in various plants,[11] notably in Hyacinthaceae (Scilloideae).[12]

Sappanone A can be found in Caesalpinia sappan.[13]

C-Methylated homoisoflavanones (3-(4'-methoxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one, 3-(4'-methoxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6,8-dimethyl-chroman-4-one, 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-8-methoxy-chroman-4-one and 3-(4'-hydroxy-benzyl)-5,7-dihydroxy-6-methyl-chroman-4-one) can be found in the rhizomes of Polygonum odoratum.[14]

5,7-Dihydroxy-3-(3-hydroxy-4-methoxybenzyl)-chroman-4-one, a homoisoflavanone extracted from Cremastra appendiculata (Orchidaceae), has anti-angiogenic activities and inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-?B nuclear localization.[15]

In Asparagaceae

3-(4'-Methoxybenzyl)-7,8-methylenedioxy-chroman-4-one, a homoisoflavanone with antimycobacterial activity, can be isolated from Chlorophytum inornatum (Asparagaceae, Agavoideae).[6]

5,7-Dihydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-hydroxy-3-(4-hydroxybenzyl)-chroman-4-one and 4’-demethyl-3,9-dihydro-punctatin can be isolated from Agave tequilana (Asparagaceae, Agavoideae).[16]

in Scilloideae (Hyacinthaceae)

7-O-α-Rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4-methoxybenzyl)-chroman-4-one, 7-O-α-rhamnopyranosyl-(1→6)-β-glucopiranosyl-5-hydroxy-3-(4′-hydroxybenzyl)-chroman-4-one, 5,7-dihydroxy-3-(4′-methoxybenzyl)-chroman-4-one (3,9-dihidroeucomin), 5,7-dihidroxy-6-methoxy-3-(4′-methoxybenzyl)-chroman-4-one, 5,7-dihidroxy 3-(4′-hydroxybenzyl)-chroman-4-one (4,4′-demethyl-3,9-dihydropuctatin), 5,7-dihidroxy-3-(4′-hydroxybenzyl)-6-methoxy-chroman-4-one (3,9-dihydroeucomnalin) and 7-hydroxy-3-(4′-hydroxybenzyl)-5-methoxy-chroman-4-one can be isolated from the bulbs of Ledebouria floribunda (tribe Hyacintheae).[17] Other compounds can be found in Ledebouria revoluta, a plant widely used as an ethnomedicinal in southern Africa.[10]

The homoisoflavanone glycosides (-)-7-O-methyleucomol 5-O-beta-D-glucopyranoside, (-)-7-O-methyleucomol 5-O-beta-rutinoside and (-)-7-O-methyleucomol 5-O-beta-neohesperidoside can be isolated from the bulbs of Ornithogalum caudatum (tribe Ornithogaloideae).[18]

Scillascillin-type homoisoflavanones (3-hydroxy-type homoisoflavonoids) can be isolated from Drimiopsis maculata (tribe Hyacintheae, Massoniinae).[19]

Eucomin, eucomol,[20] (E)-7-O-methyl-eucomin, (—)-7-O-methyleucomol, (+)-3,9-dihydro-eucomin and 7-O-methyl-3,9-dihydro-eucomin[21] can be isolated from the bulbs of Eucomis bicolor (tribe Hyacintheae, Massoniinae). 4′-o-Methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin can be found in Eucomis autumnalis.[22]

Five homoisoflavanones, 3,5-dihydroxy-7,8-dimethoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7-methoxy-3-(3',4'-dimethoxybenzyl)-4-chromanone, 3,5-dihydroxy-7,8-dimethoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone, 3,5,6-trihydroxy-7-methoxy-3-(3'-hydroxy-4'-methoxybenzyl)-4-chromanone and 3,5,7-trihydroxy-3-(3'-hydroxy-4'methoxybenzyl)-4-chromanone, can be isolated from the dichloromethane extract of the bulbs of Pseudoprospero firmifolium (tribe Hyacintheae, subtribe Pseudoprospero).[23]

A homoisoflavanone can also be found in Albuca fastigiata (tribe Ornithogaleae).[24]

The same molecule, 5,6-dimethoxy-7-hydroxy-3-(4′-hydroxybenzyl)-4-chromanone, can be found in the bulbs of Resnova humifusa and Eucomis montana (tribe Hyacintheae, subtribe Massoniinae).[25]

Uses

The homoisoflavonoids portulacanones A, B, C and D show in vitro cytotoxic activities towards four human cancer cell lines.[7]

See also

References

  1. Study on the interaction of homoisoflavonoids with nucleic acids Comparative study by spectroscopic methods. by Roshanak Namdar and Shohreh Nafisi, ISBN 978-3-659-49924-1, EAN:9783659499241 (abstract)
  2. New efficient synthesis and bioactivity of homoisoflavonoids. Vallabhaneni Madhava Rao, Guri Lakshmi Vasantha Damu, Dega Sudhakar, Vidavaluri Siddaiah and Chunduri Venkata Rao, ARKIVOC, 2008 (xi), pages 285-294 (article)
  3. A new synthesis of homoisoflavanones (3-benzyl-4-chromanones). Amolak C. Jain and Anita Mehta, Tetrahedron, 1985, Volume 41, Issue 24, Pages 5933–5937, doi:10.1016/S0040-4020(01)91433-4
  4. Synthesis and NMR elucidation of homoisoflavanone analogues. M. Shaikh, K. Petzold, H. G. Kruger and K. du Toit, Structural Chemistry, January 2011, volume 22, pages 161-166, doi:10.1007/s11224-010-9703-x
  5. Synthesis of scillascillin, a naturally occurring benzocyclobutene. Viresh H. Rawal and Michael P. Cava, Tetrahedron Letters, 1983, Volume 24, Issue 50, Pages 5581–5584, doi:10.1016/S0040-4039(00)94146-7
  6. 1 2 Synthesis of (+/-) homoisoflavanone and corresponding homoisoflavane. Zhang L, Zhang WG, Kang J, Bao K, Dai Y and Yao XS, Journal of Asian natural products research, volume 10, issues 9-10, pages 909-13, PubMed
  7. 1 2 Yan J, Sun LR, Zhou ZY, Chen YC, Zhang WM, Dai HF, Tan JW "Homoisoflavonoids from the medicinal plant Portulaca oleracea." Phytochemistry 2012 Aug;80, pages 37-41, doi:10.1016/j.phytochem.2012.05.014
  8. Homoisoflavonoids and related compounds. II. Isolation and absolute configurations of 3,4-dihydroxylated homoisoflavans and brazilins from Caesalpinia sappan L. Michio Namikoshi, Hiroyuki Nakata, Hiroyuki Yamada, Minako Nagai and Tamotsu Saitoh, Chemical & Pharmaceutical Bulletin, 1987, volume 35, number 7, pages 2761-2773 (abstract)
  9. A new homostilbene and two new homoisoflavones from the bulbs of Scilla scilloides. Nishida Y, Eto M, Miyashita H, Ikeda T, Yamaguchi K, Yoshimitsu H, Nohara T and Ono M, Chem Pharm Bull (Tokyo)., July 2008, volume56, issue 7, pages 1022-1025, PubMed
  10. 1 2 3-Benzyl-4-chromanones (homoisoflavanones) from bulbs of the ethnomedicinal geophyte Ledebouria revoluta (Hyacinthaceae). N. Moodley, N.R. Crouch, D.A Mulholland, D. Slade and D. Ferreira, South African Journal of Botany, January 2006; 72(4):517-520. doi:10.1016/j.sajb.2006.01.004
  11. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Karen du Toit, Siegfried E Drewes and Johannes Bodenstein, Natural product research, March 2010, 24(5), pages 457-490, doi:10.1080/14786410903335174
  12. Antibacterial activity and QSAR of homoisoflavanones isolated from six Hyacinthaceae species. K. Du Toit, E.E. Elgorashi, S.F. Malan, D.A. Mulholland, S.E. Drewes and J. Van Staden, South African Journal of Botany, January 2007, 73(2), pages 236-241, doi:10.1016/j.sajb.2007.01.002
  13. Melanogenesis Inhibition by Homoisoflavavone Sappanone A from Caesalpinia sappan. Te-Sheng Chang, Shih-Yu Chao and Hsiou-Yu Ding, Int J Mol Sci., 2012, volume 13, issue 8, pages 10359–10367, doi:10.3390/ijms130810359, PMC 3431864
  14. A new C-methylated homoisoflavanone and triterpenoid from the rhizomes of Polygonatum odoratum. Wang D, Li D, Zhu W and Peng P, Natural product research, 2009, 23:6, pages 580-589, PubMed
  15. Homoisoflavanone inhibits UVB-induced skin inflammation through reduced cyclooxygenase-2 expression and NF-?B nuclear localization. Seulgi Hur, Yun Sang Lee, Hyun Yoo, Jeong-Hee Yang and Tae-Yoon Kim, Journal of Dermatological Science, September 2010, Volume 59, Issue 3, Pages 163–169, doi:10.1016/j.jdermsci.2010.07.001
  16. Homoisoflavanones from Agave tequilana Weber. José Antonio Morales-Serna, Armando Jiménez, Rosa Estrada-Reyes, Carmen Marquez, Jorge Cárdenas and Manuel Salmón, Molecules, 2010, volume 15, pages 3295-3301, doi:10.3390/molecules15053295
  17. Homoisoflavanones from Ledebouria floribunda. María Isabel Calvo, Fitoterapia, March 2009, Volume 80, Issue 2, Pages 96–101, doi:10.1016/j.fitote.2008.10.006
  18. Three new homoisoflavanone glycosides from the bulbs of Ornithogalum caudatum. Tang Y, Yu B, HU J, WU T and Hui H, Journal of natural products, February 2002, volume 65, issue 2, pages 218-220, PubMed
  19. Scillascillin-type homoisoflavanones from Drimiopsis maculata (Hyacinthaceae). Koorbanally C, Crouch NR and Mulholland DA, Biochemical systematics and ecology, May 2001, volume 29, issue 5, pages 539-541, PubMed
  20. Homoisoflavanones and Biogenetically Related Compounds. W. Heller and Ch. Tamm, Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, 1981, Volume 40, pages 105-152, doi:10.1007/978-3-7091-8611-4_3
  21. Homoisoflavonones. IV. New constituents of the eucomin series of Eucomis bicolor (author's transl). Heller W, Andermatt P, Schaad W A and TAMM C, Helvetica chimica acta, 29 september 1976, volume 59, issue 6, pages 2048-2058, PubMed, doi:10.1002/hlca.19760590618
  22. The homo-isoflavones II1). Isolation and structure of 4′-o-methyl-punctatin, autumnalin and 3,9-dihydro-autumnalin. W.T.L. Sidwell and Ch. Tamm, Tetrahedron Letters, 1970, Volume 11, Issue 7, Pages 475–47Z, doi:10.1016/0040-4039(70)89003-7
  23. Homoisoflavanones from Pseudoprospero firmifolium of the monotypic tribe Pseudoprospereae (Hyacinthaceae: Hyacinthoideae). Koorbanally C, Sewjee Sarisha, Mulholland D A, Crouch N R and Dold A, Phytochemistry, November–December 2007, volume 68, issues 22-24, pages 2753-2756, PubMed
  24. A novel 3-hydroxy-3-benzyl-4-chromanone-type homoisoflavonoid from Albuca fastigiata (Ornithogaloideae: Hyacinthaceae). Koorbanally, Mulholland and Crouch, Biochemical Systematics and Ecology, May 2005, volume 33, issue 5, pages 545–549, doi:10.1016/j.bse.2004.08.009
  25. Coincident isolation of a novel homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae). Neil A. Koorbanally, Neil R. Crouch, Avinash Harilal, Bavani Pillay, Bavani Pillay and Dulcie A. Mulholland, Biochemical Systematics and Ecology, January 2006, 34(2):114-118. doi:10.1016/j.bse.2005.08.003
This article is issued from Wikipedia - version of the Friday, March 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.