Hurwitz determinant

In mathematics, Hurwitz determinants were introduced by Adolf Hurwitz (1895), who used them to give a criterion for all roots of a polynomial to have negative real part.

Definition

Let us consider a characteristic polynomial P in the variable λ of the form:


P(\lambda)= a_0 \lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n

where a_i, i=0,1,\ldots,n, are real.

The square Hurwitz matrix associated to P is given below:


H=
\begin{pmatrix}
a_1 & a_3 & a_5 & \dots & \dots & \dots & 0 & 0 & 0 \\
a_0 & a_2 & a_4 & & & & \vdots & \vdots & \vdots \\
0 & a_1 & a_3 & & & & \vdots & \vdots & \vdots \\
\vdots & a_0 & a_2 & \ddots & & & 0 & \vdots & \vdots \\
\vdots & 0 & a_1 & & \ddots & & a_n & \vdots & \vdots \\
\vdots & \vdots  & a_0 & & & \ddots &  a_{n-1} & 0 & \vdots \\
\vdots & \vdots  & 0 & & & & a_{n-2} & a_n & \vdots \\
\vdots & \vdots & \vdots & & & & a_{n-3} & a_{n-1} & 0 \\
0 & 0 & 0 & \dots & \dots & \dots & a_{n-4} & a_{n-2} & a_n
\end{pmatrix}.

The ith Hurwitz determinant is the determinant of the ith leading principal minor of the above Hurwitz matrix H. There are n Hurwitz determinants for a characteristic polynomial of degree n.

See also

References

This article is issued from Wikipedia - version of the Friday, October 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.