Iodine oxide
Iodine oxides are chemical compounds of oxygen and iodine. The chemistry of these compound is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important at in the marine boundary layer.[1]
Molecular formula | I2O | IO[3] | IO2 | I2O4 | I2O5 | I4O9 |
---|---|---|---|---|---|---|
Name | diiodine monoxide | iodine monoxide | iodine dioxide | diiodine tetroxide | diiodine pentoxide | tetraiodine nonoxide |
Structure | I2O | IO | IO2 | (IO2)2 | O(IO2)2 | I(OIO2)3 |
CAS registry | 39319-71-6 | 14696-98-1 | 13494-92-3 | 1024652-24-1 | 12029-98-0 | 66523-94-2 |
Appearance | Unknown | purple gas | yellow solid | yellow solid | white crystalline solid | dark yellow solid |
Oxidation state | 1+ | +2 | +4 | +3 and +5 | +5 | +3 and +5 |
Melting point | not isolable | not isolable | not isolable | decomp. 100 °C | decomp. 300–350 °C | decomp. 75 °C |
Specific gravity | 4.2 | 4.8 | ||||
Solubility in water | decomp. to HIO3 + I2 | 187 g/100 mL | decomp. to HIO3 + I2 |
Diiodine monoxide has largely been the subject of theoretical study,[4] but there is some evidence that it may be prepared in a similar manner to dichlorine monoxide, via a reaction between HgO and I2.[5] The compound appears to be highly unstable but can react with alkenes to give halogenated products.[6]
Radical iodine oxide (IO), iodine dioxide (IO2) and diiodine tetroxide ((IO2)2) all possess significant and interconnected atmospheric chemistry. They are formed, in very small quantities, at the marine boundary layer by the photooxidation of diiodomethane, which is produced by macroalga such as seaweed.[7] Despite the small quantities produced (typically below ppt) they are thought to be powerful ozone depletion agents.[8][9]
Diiodine pentoxide (I2O5) is the anhydride of iodic acid and the only stable anhydride of iodine.
Tetraiodine nonoxide (I4O9) has been prepared by the gas-phase reaction of I2 with O3 but has not been extensively studied.[10]
See also
- Oxygen fluoride
- Chlorine oxide
- Bromine oxide
- Other compounds of iodine with elements in the periodic table:
HI | He | ||||||||||||||||
LiI | BeI2 | BI3 | CI4 | NI3 | I2O4, I2O5, I4O9 |
IF, IF3, IF5, IF7 |
Ne | ||||||||||
NaI | MgI2 | AlI3 | SiI4 | PI3, P2I4 |
S | ICl, ICl3 |
Ar | ||||||||||
KI | CaI2 | Sc | TiI4 | VI3 | CrI3 | MnI2 | FeI2 | CoI2 | NiI2 | CuI | ZnI2 | Ga2I6 | GeI2, GeI4 |
AsI3 | Se | IBr | Kr |
RbI | SrI2 | Y | ZrI4 | Nb | Mo | Tc | Ru | Rh | Pd | AgI | CdI2 | InI3 | SnI4, SnI2 |
SbI3 | TeI4 | I | Xe |
CsI | BaI2 | Hf | Ta | W | Re | Os | Ir | Pt | AuI | Hg2I2, HgI2 |
TlI | PbI2 | BiI3 | Po | AtI | Rn | |
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo | |
↓ | |||||||||||||||||
La | Ce | Pr | Nd | Pm | SmI2 | Eu | Gd | TbI3 | Dy | Ho | Er | Tm | Yb | Lu | |||
Ac | ThI4 | Pa | UI3, UI4 |
Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
References
- ↑ Kaltsoyannis, Nikolas; Plane, John M. C. (2008). "Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere". Physical Chemistry Chemical Physics 10 (13): 1723. doi:10.1039/B715687C.
- ↑ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
- ↑ Nikitin, I V (31 August 2008). "Halogen monoxides". Russian Chemical Reviews 77 (8): 739–749. doi:10.1070/RC2008v077n08ABEH003788.
- ↑ Novak, Igor (1998). "Theoretical study of I2O". Heteroatom Chemistry 9 (4): 383–385. doi:10.1002/(SICI)1098-1071(1998)9:4<383::AID-HC6>3.0.CO;2-9.
- ↑ Forbes, Craig P.; Goosen, André; Laue, Hugh A. H. (1974). "Hypoiodite reaction: kinetic study of the reaction of 1,1-diphenyl-ethylene with mercury(II) oxide iodine". Journal of the Chemical Society, Perkin Transactions 1: 2350. doi:10.1039/P19740002350.
- ↑ Cambie, Richard C.; Hayward, Rodney C.; Lindsay, Barry G.; Phan, Alice I. T.; Rutledge, Peter S.; Woodgate, Paul D. (1976). "Reactions of iodine oxide with alkenes". Journal of the Chemical Society, Perkin Transactions 1 (18): 1961. doi:10.1039/P19760001961.
- ↑ Hoffmann, Thorsten; O'Dowd, Colin D.; Seinfeld, John H. (15 May 2001). "Iodine oxide homogeneous nucleation: An explanation for coastal new particle production". Geophysical Research Letters 28 (10): 1949–1952. doi:10.1029/2000GL012399.
- ↑ Saiz-Lopez, A.; Fernandez, R. P.; Ordóñez, C.; Kinnison, D. E.; Gómez Martín, J. C.; Lamarque, J.-F.; Tilmes, S. (10 December 2014). "Iodine chemistry in the troposphere and its effect on ozone". Atmospheric Chemistry and Physics 14 (23): 13119–13143. doi:10.5194/acp-14-13119-2014.
- ↑ Cox, R. A.; Bloss, W. J.; Jones, R. L.; Rowley, D. M. (1 July 1999). "OIO and the atmospheric cycle of iodine". Geophysical Research Letters 26 (13): 1857–1860. doi:10.1029/1999GL900439.
- ↑ Sunder, S.; Wren, J. C.; Vikis, A. C. (December 1985). "Raman spectra of I4O9 formed by the reaction of iodine with ozone". Journal of Raman Spectroscopy 16 (6): 424–426. doi:10.1002/jrs.1250160611.
|