Silver iodide

Silver iodide
Names
Other names
Silver(I) iodide
Identifiers
7783-96-2 YesY
ChemSpider 22969 YesY
EC Number 232-038-0
Jmol 3D image Interactive graph
PubChem 6432717
UNII 81M6Z3D1XE YesY
Properties
AgI
Molar mass 234.77 g/mol
Appearance yellow, crystalline solid
Odor odorless
Density 5.675 g/cm3, solid
Melting point 558 °C (1,036 °F; 831 K)
Boiling point 1,506 °C (2,743 °F; 1,779 K)
3×107g/100mL (20 °C)
8.52 × 10 −17
Solubility soluble in acid
Structure
hexagonal (β-phase, < 147 °C)
cubic (α-phase, > 147 °C)
Thermochemistry
115 J·mol−1·K−1[1]
−62 kJ·mol−1[1]
Hazards
Safety data sheet Sigma-Aldrich
not listed
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
0
2
0
Flash point Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because AgI is highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

Structure

The structure adopted by silver iodide is temperature dependent:[2]

The golden-yellow crystals on this mineral sample are iodargyrite, a naturally occurring form of β-AgI.

Preparation and properties

Silver iodide is prepared by reaction of an iodide solution (e.g., potassium iodide) with a solution of silver ions (e.g., silver nitrate). A yellowish solid quickly precipitates. The solid is a mixture of the two principal phases. Dissolution of the AgI in hydroiodic acid, followed by dilution with water precipitates β-AgI. Alternatively, dissolution of AgI in a solution of concentrated silver nitrate followed by dilution affords α-AgI.[3] If the preparation is not conducted in the absence of sunlight, the solid darkens rapidly, the light causing the reduction of ionic silver to metallic. The photosensitivity varies with sample purity.

Cloud seeding

Cessna 210 equipped with a silver iodide generator for cloud seeding

The crystalline structure of β-AgI is similar to that of ice, allowing it to induce freezing by the process known as heterogeneous nucleation. Approximately 50,000 kg are used for cloud seeding annually, each seeding experiment consuming 10–50 grams.[4]

Safety

Extreme exposure can lead to argyria, characterized by localized discoloration of body tissue.[5]

References

  1. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A23. ISBN 0-618-94690-X.
  2. Binner, J. G. P.; Dimitrakis, G.; Price, D. M.; Reading, M.; Vaidhyanathan, B. (2006). "Hysteresis in the β–α Phase Transition in Silver Iodide" (PDF). Journal of Thermal Analysis and Calorimetry 84 (2): 409–412. doi:10.1007/s10973-005-7154-1.
  3. O. Glemser, H. Saur "Silver Iodide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1036-7.
  4. Phyllis A. Lyday "Iodine and Iodine Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a14_381
  5. "Silver Iodide". TOXNET: Toxicogy Data Network. U.S. National Library of Medicine. Retrieved 9 March 2016.
Wikimedia Commons has media related to Silver iodide.
HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 Y ZrI4 Nb Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   Hf Ta W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf Es Fm Md No Lr
This article is issued from Wikipedia - version of the Friday, April 01, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.