Legendre symbol

p \ a 0 1 2 3 4 5 6 7 8 9 10
3 0 1 -1
5 0 1 -1 -1 1
7 0 1 1 -1 1 -1 -1
11 0 1 -1 1 1 1 -1 -1 -1 1 -1

Legendre symbol (a/p) for various a (along top) and p (along left side). Only 0 ≤ a < p are shown, since due to the first property below any other a can be reduced modulo p. Quadratic residues are highlighted in yellow, and correspond precisely to the values 0 and 1.

In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo a prime number p: its value on a (nonzero) quadratic residue mod p is 1 and on a non-quadratic residue (non-residue) is −1. Its value on zero is 0.

The Legendre symbol was introduced by Adrien-Marie Legendre in 1798[1] in the course of his attempts at proving the law of quadratic reciprocity. Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order. The notational convenience of the Legendre symbol inspired introduction of several other "symbols" used in algebraic number theory, such as the Hilbert symbol and the Artin symbol.

Definition

Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is congruent to a perfect square modulo p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function of a and p defined as

\left(\frac{a}{p}\right) = 
\begin{cases}
 1 & \text{ if } a \text{ is a quadratic residue modulo } p \text{ and } a \not\equiv 0\pmod{p}, \\
-1 & \text{ if } a \text{ is a quadratic non-residue modulo } p, \\
 0 & \text{ if } a \equiv 0 \pmod{p}.  
\end{cases}

Legendre's original definition was by means of the explicit formula

 \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p} \quad \text{ and } \quad\left(\frac{a}{p}\right) \in \{-1,0,1\}.

By Euler's criterion, which had been discovered earlier and was known to Legendre, these two definitions are equivalent.[2] Thus Legendre's contribution lay in introducing a convenient notation that recorded quadratic residuosity of a mod p. For the sake of comparison, Gauss used the notation a\mathrm{R}p, a\mathrm{N}p according to whether a is a residue or a non-residue modulo p.

For typographical convenience, the Legendre symbol is sometimes written as (a|p) or (a/p). The sequence (a|p) for a equal to 0,1,2,... is periodic with period p and is sometimes called the Legendre sequence, with {0,1,−1} values occasionally replaced by {1,0,1} or {0,1,0}.[3]

Table of values

The following is a table of values of Legendre symbol \left(\frac{k}{n}\right) with n ≤ 127, k ≤ 30, n odd prime.

n \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
3 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
5 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
7 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
11 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
107 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
113 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
127 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Properties of the Legendre symbol

There are a number of useful properties of the Legendre symbol which, together with the law of quadratic reciprocity, can be used to compute it efficiently.

Legendre symbol and quadratic reciprocity

Let p and q be odd primes. Using the Legendre symbol, the quadratic reciprocity law can be stated concisely:

\left(\frac{q}{p}\right)\left(\frac{p}{q}\right) = (-1)^{\tfrac{p-1}{2}\tfrac{q-1}{2}}.

Many proofs of quadratic reciprocity are based on Legendre's formula

\left(\frac{a}{p}\right) \equiv a^{\tfrac{p-1}{2}} \pmod p.

In addition, several alternative expressions for the Legendre symbol were devised in order to produce various proofs of the quadratic reciprocity law.

\sum_{k=0}^{p-1}\zeta^{ak^2}=\left(\frac{a}{p}\right)\sum_{k=0}^{p-1}\zeta^{k^2},\qquad \zeta = e^{\frac{2\pi i}{p}}
in his fourth[5] and sixth[6] proofs of quadratic reciprocity.
\left(\frac{p}{q}\right) =\sgn\left(\prod_{i=1}^{\frac{q-1}{2}}\prod_{k=1}^{\frac{p-1}{2}}\left(\frac{k}{p}-\frac{i}{q}\right)\right).
Reversing the roles of p and q, he obtains the relation between \left(\frac{p}{q}\right) and \left(\frac{q}{p}\right).
\left(\frac{q}{p}\right) =\prod_{n=1}^{\frac{p-1}{2}} \frac{\sin\left(\frac{2\pi qn}{p}\right)}{\sin\left(\frac{2\pi n}{p}\right)}.
Using certain elliptic functions instead of the sine function, Eisenstein was able to prove cubic and quartic reciprocity as well.

Related functions

Computational example

The above properties, including the law of quadratic reciprocity, can be used to evaluate any Legendre symbol. For example:

\begin{align}
\left ( \frac{12345}{331}\right )&=\left ( \frac{3}{331}\right ) \left ( \frac{5}{331}\right ) \left ( \frac{823}{331}\right ) \\
&= \left ( \frac{3}{331}\right ) \left ( \frac{5}{331}\right ) \left ( \frac{161}{331}\right ) \\
&= \left ( \frac{3}{331}\right ) \left ( \frac{5}{331}\right ) \left ( \frac{7}{331}\right ) \left ( \frac{23}{331}\right ) \\
&= (-1)\left (\frac{331}{3}\right) \left(\frac{331}{5}\right) (-1) \left(\frac{331}{7}\right) (-1)\left (\frac{331}{23}\right ) \\
&= -\left ( \frac{1}{3}\right ) \left ( \frac{1}{5}\right ) \left ( \frac{2}{7}\right ) \left ( \frac{9}{23}\right )\\
&= -\left ( \frac{1}{3}\right ) \left ( \frac{1}{5}\right ) \left ( \frac{2}{7}\right ) \left ( \frac{3^2}{23}\right )\\
&= -(1) (1) (1) (1) \\
&= -1.
\end{align}

Or using a more efficient computation:

\left ( \frac{12345}{331}\right )=\left ( \frac{98}{331}\right )=\left ( \frac{2 \cdot 7^2}{331}\right )=\left ( \frac{2}{331}\right )=(-1)^\tfrac{331^2-1}{8}=-1.

The article Jacobi symbol has more examples of Legendre symbol manipulation.

Notes

  1. A. M. Legendre Essai sur la theorie des nombres Paris 1798, p 186
  2. Hardy & Wright, Thm. 83.
  3. Jeong-Heon Kim and Hong-Yeop Song, "Trace Representation of Legendre Sequences," Designs, Codes, and Cryptography 24, p. 343–348 (2001).
  4. Ribenboim, p. 64; Lemmermeyer, ex 2.25-2.28, pp. 73–74.
  5. Gauss, "Summierung gewisser Reihen von besonderer Art" (1811), reprinted in Untersuchungen ... pp. 463–495
  6. Gauss, "Neue Beweise und Erweiterungen des Fundamentalsatzes in der Lehre von den quadratischen Resten" (1818) reprinted in Untersuchungen ... pp. 501–505
  7. Lemmermeyer, ex. p. 31, 1.34
  8. Lemmermeyer, pp. 236 ff.

References

External links

This article is issued from Wikipedia - version of the Thursday, April 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.