List of interstellar and circumstellar molecules

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

Detection

The molecules listed below were detected by spectroscopy. Their spectral features are generated by transitions of component electrons between different energy levels, or by rotational or vibrational spectra. Detection usually occurs in radio, microwave, or infrared portions of the spectrum.[1]

Interstellar molecules are formed by chemical reactions within very sparse interstellar or circumstellar clouds of dust and gas. Usually this occurs when a molecule becomes ionized, often as the result of an interaction with a cosmic ray. This positively charged molecule then draws in a nearby reactant by electrostatic attraction of the neutral molecule's electrons. Molecules can also be generated by reactions between neutral atoms and molecules, although this process is generally slower.[2] The dust plays a critical role of shielding the molecules from the ionizing effect of ultraviolet radiation emitted by stars.[3]

History

The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the Universe was only 10–17 million years old.[4][5]

The first carbon-containing molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937.[6] From the early 1970s it was becoming evident that interstellar dust consisted of a large component of more complex organic molecules (COMs),[7] probably polymers. Chandra Wickramasinghe proposed the existence of polymeric composition based on the molecule formaldehyde (H2CO).[8] Fred Hoyle and Chandra Wickramasinghe later proposed the identification of bicyclic aromatic compounds from an analysis of the ultraviolet extinction absorption at 2175 Å,[9] thus demonstrating the existence of polycyclic aromatic hydrocarbon molecules in space.

In 2004, scientists reported[10] detecting the spectral signatures of anthracene and pyrene in the ultraviolet light emitted by the Red Rectangle nebula (no other such complex molecules had ever been found before in outer space). This discovery was considered a confirmation of a hypothesis that as nebulae of the same type as the Red Rectangle approach the ends of their lives, convection currents cause carbon and hydrogen in the nebulae's core to get caught in stellar winds, and radiate outward.[11] As they cool, the atoms supposedly bond to each other in various ways and eventually form particles of a million or more atoms. The scientists inferred[10] that since they discovered polycyclic aromatic hydrocarbons (PAHs) — which may have been vital in the formation of early life on Earth — in a nebula, by necessity they must originate in nebulae.[11]

In 2010, fullerenes (or "buckyballs") were detected in nebulae.[12] Fullerenes have been implicated in the origin of life; according to astronomer Letizia Stanghellini, "It's possible that buckyballs from outer space provided seeds for life on Earth."[13]

In October 2011, scientists found using spectroscopy that cosmic dust contains complex organic compounds ("amorphous organic solids with a mixed aromatic-aliphatic structure") that could be created naturally, and rapidly, by stars.[14][15][16] The compounds are so complex that their chemical structures resemble the makeup of coal and petroleum; such chemical complexity was previously thought to arise only from living organisms.[14] These observations suggest that organic compounds introduced on Earth by interstellar dust particles could serve as basic ingredients for life due to their surface-catalytic activities.[17][18] One of the scientists suggested that these compounds may have been related to the development of life on Earth and said that, "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."[14]

In August 2012, astronomers at Copenhagen University reported the detection of a specific sugar molecule, glycolaldehyde, in a distant star system. The molecule was found around the protostellar binary IRAS 16293-2422, which is located 400 light years from Earth.[19][20] Glycolaldehyde is needed to form ribonucleic acid, or RNA, which is similar in function to DNA. This finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.[21]

In September 2012, NASA scientists reported that PAHs, subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation, and hydroxylation, to more complex organics — "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively".[22][23] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."[22][23]

PAHs are found everywhere in deep space[24] and, in June 2013, PAHs were detected in the upper atmosphere of Titan, the largest moon of the planet Saturn.[25]

In 2013, Dwayne Heard at the University of Leeds suggested[26] that quantum mechanical tunneling could explain a reaction his group observed taking place, at a significantly higher than expected rate, between cold (around 63 Kelvin) hydroxyl and methanol molecules, apparently bypassing intramolecular energy barriers which would have to be overcome by thermal energy or ionization events for the same rate to exist at warmer temperatures. The proposed tunneling mechanism may help explain the common observation of fairly complex molecules (up to tens of atoms) in interstellar space.

A particularly large and rich region for detecting interstellar molecules is Sagittarius B2 (Sgr B2). This giant molecular cloud lies near the center of the Milky Way galaxy and is a frequent target for new searches. About half of the molecules listed below were first found near Sgr B2, and nearly every other molecule has since been detected in this feature.[27] A rich source of investigation for circumstellar molecules is the relatively nearby star CW Leonis (IRC +10216), where about 50 compounds have been identified.[28]

In March 2015, NASA scientists reported that, for the first time, complex DNA and RNA organic compounds of life, including uracil, cytosine and thymine, have been formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), the most carbon-rich chemical found in the Universe, may have been formed in red giants or in interstellar dust and gas clouds, according to the scientists.[29]

Molecules

The following tables list molecules that have been detected in the interstellar medium, grouped by the number of component atoms. If there is no entry in the molecule column, only the ionized form has been detected. For molecules where no designation was given in the scientific literature, that field is left empty. Mass is given in atomic mass units. The total number of unique species, including distinct ionization states, is listed in parentheses in each section header.

Most of the molecules detected so far are organic. Only one inorganic species has been observed in molecules which contain at least five atoms, SiH4.[30] Larger molecules have so far all had at least one carbon atom, with no N−N or O−O bonds.[30]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[31]

Diatomic (43)

MoleculeDesignationMassIons
AlClAluminium monochloride[32][33] 62.5
AlFAluminium monofluoride[32][34] 46
AlOAluminium monoxide[35] 43
Argon hydride[36][37] 41ArH+
C2Diatomic carbon[38][39] 24
Fluoromethylidynium 31CF+[40]
CHMethylidyne radical[41] 13CH+[42]
CNCyanogen radical[32][41][43][44] 26CN+,[45] CN[46]
COCarbon monoxide[32][47][48] 28CO+[49]
CPCarbon monophosphide[44] 43
CSCarbon monosulfide[32] 44
FeOIron(II) oxide[50] 82
H2Molecular hydrogen[51] 2
HClHydrogen chloride[52] 36.5HCl+[53]
HFHydrogen fluoride[54] 20
HOHydroxyl radical[32] 17OH+[55]
KClPotassium chloride[32][33] 75.5
NHNitrogen monohydride[56][57] 15
N2Molecular nitrogen[58][59] 28
NONitric oxide[60] 30NO+[45]
NSNitrogen sulfide[32] 46
NaClSodium chloride[32][33] 58.5
Magnesium monohydride cation 25.3MgH+[45]
NaISodium iodide[61] 150
O2Molecular oxygen[62] 32
PNPhosphorus mononitride[63] 45
POPhosphorus monoxide[64] 47
SHSulfur monohydride[65] 33SH+[66]
SOSulfur monoxide[32] 48SO+[42]
SiCCarborundum[32][67] 40
SiNSilicon mononitride[32] 42
SiOSilicon monoxide[32] 44
SiSSilicon monosulfide[32] 60
TiOTitanium oxide[68] 63.9
The H+
3
cation is one of the most abundant ions in the universe. It was first detected in 1993.[2][69]

Triatomic (43)

MoleculeDesignationMassIons
AlNCAluminium isocyanide[32] 53
AlOHAluminium hydroxide[70] 44
C3Tricarbon[39] 36
C2HEthynyl radical[32][43] 25
CCNCyanomethylidyne[71] 38
C2ODicarbon monoxide[72] 40
C2SThioxoethenylidene[73] 56
C2P[74] 55
CO2Carbon dioxide[75] 44
FeCNIron cyanide[76] 82
Protonated molecular hydrogen 3H+
3
[2][69]
H2CMethylene radical[38] 14
Chloronium 37.5H2Cl+[77]
H2OWater[78] 18H2O+[79]
HO2Hydroperoxyl[80] 33
H2SHydrogen sulfide[32] 34
HCNHydrogen cyanide[32][43][81] 27
HNCHydrogen isocyanide[82] 27
HCOFormyl radical[83] 29HCO+[42][83][84]
HCPPhosphaethyne[85] 44
Thioformyl 45HCS+[42][84]
HNCHydrogen isocyanide[86] 27
Diazenylium 29HN+
2
[84]
HNONitroxyl[87] 31
Isoformyl 29HOC+[43]
KCNPotassium cyanide[32] 65
MgCNMagnesium cyanide[32] 50
MgNCMagnesium isocyanide[32] 50
NH2Amino radical[88] 16
29N2H+[42][89]
N2ONitrous oxide[90] 44
NaCNSodium cyanide[32] 49
NaOHSodium hydroxide[91] 40
OCSCarbonyl sulfide[92] 60
O3Ozone[93] 48
SO2Sulfur dioxide[32][94] 64
c-SiC2c-Silicon dicarbide[32][67] 52
SiCSiDisilicon carbide[95] 68
SiCNSilicon carbonitride[96] 54
SiNC[97] 54
TiO2Titanium dioxide[68] 79.9
Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[98]

Four atoms (27)

MoleculeDesignationMassIons
CH3Methyl radical[99] 15
l-C3HPropynylidyne[32][100] 37l-C3H+[101]
c-C3HCyclopropynylidyne[102] 37
C3NCyanoethynyl[38] 50C3N[74]
C3OTricarbon monoxide[100] 52
C3STricarbon sulfide[32][73] 68
Hydronium 19H3O+[103]
C2H2Acetylene[104] 26
H2CNMethylene amidogen[105] 28H2CN+[42]
H2COFormaldehyde[98] 30
H2CSThioformaldehyde[106] 46
HCCN[107] 39
HCCOKetenyl[108] 41
Protonated hydrogen cyanide 28HCNH+[84]
Protonated carbon dioxide 45HOCO+[109]
HCNOFulminic acid[110] 43
HOCNCyanic acid[111] 43
HOOHHydrogen peroxide[112] 34
HNCOIsocyanic acid[94] 43
HNCSIsothiocyanic acid[113] 59
NH3Ammonia[32][114] 17
HSCNThiocyanic acid[115] 59
SiC3Silicon tricarbide[32]  64
HMgNCHydromagnesium isocyanide[116]  51.3
Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[117]

Five atoms (19)

MoleculeDesignationMassIons
Ammonium ion[118][119]  18NH+
4
CH4Methane[56] 16
CH3OMethoxy radical[120] 31
c-C3H2Cyclopropenylidene[43][121][122] 38
l-H2C3Propadienylidene[122] 38
H2CCNCyanomethyl 40
H2C2OKetene[94] 42
H2CNHMethylenimine[123] 29
HNCNHCarbodiimide[124] 42
Protonated formaldehyde 31H2COH+[125]
C4HButadiynyl[32] 49C4H[126]
HC3NCyanoacetylene[32][43][84][122][127] 51
HCC-NCIsocyanoacetylene[128] 51
HCOOHFormic acid[122] 46
NH2CNCyanamide[129] 42
Protonated cyanogen 53NCCNH+[130]
HC(O)CNCyanoformaldehyde[131] 55
SiC4Silicon-carbide cluster[67] 92
SiH4Silane[132] 32
In the ISM, formamide (above) can combine with methylene to form acetamide.[133]

Six atoms (16)

MoleculeDesignationMassIons
c-H2C3OCyclopropenone[133] 54
E-HNCHCNE-Cyanomethanimine[134] 54
C2H4Ethylene[135] 28
CH3CNAcetonitrile[94][136][137] 40
CH3NCMethyl isocyanide[136] 40
CH3OHMethanol[94] 32
CH3SHMethanethiol[113] 48
l-H2C4Diacetylene[32][138] 50
Protonated cyanoacetylene 52HC3NH+[84]
HCONH2Formamide[133] 44
C5HPentynylidyne[32][73] 61
C5NCyanobutadiynyl radical[139] 74
HC2CHOPropynal[140] 54
HC4N[32]  63
CH2CNHKetenimine[121] 40
C5S[141] 92
Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.[142]

Seven atoms (10)

MoleculeDesignationMassIons
c-C2H4OEthylene oxide[143] 44
CH3C2HMethylacetylene[43] 40
H3CNH2Methylamine[144] 31
CH2CHCNAcrylonitrile[94][136] 53
H2CHCOHVinyl alcohol[142] 44
C6HHexatriynyl radical[32][73] 73C6H[122][145]
HC4CNCyanodiacetylene[94][127][136] 75
CH3CHOAcetaldehyde[32][143] 44
CH3NCOMethyl isocyanate[146] 57
The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[147]

Eight atoms (11)

MoleculeDesignationMass
H3CC2CNMethylcyanoacetylene[148] 65
H2COHCHOGlycolaldehyde[149] 60
HCOOCH3Methyl formate[94][122][149] 60
CH3COOHAcetic acid[147] 60
H2C6Hexapentaenylidene[32][138] 74
CH2CHCHOPropenal[121] 56
CH2CCHCNCyanoallene[121][148] 65
CH3CHNHEthanimine[150] 43
C7HHeptatrienyl radical[151] 85
NH2CH2CNAminoacetonitrile[152] 56
(NH2)2COUrea[153] 60

Nine atoms (10)

MoleculeDesignationMassIons
CH3C4HMethyldiacetylene[154] 64
CH3OCH3Dimethyl Ether[155] 46
CH3CH2CNPropionitrile[32][94][122][136] 55
CH3CONH2Acetamide[121][133] 59
CH3CH2OHEthanol[156] 46
C8HOctatetraynyl radical[157] 97C8H[158]
HC7NCyanohexatriyne or Cyanotriacetylene[32][114][159][160] 99
CH3CHCH2Propylene (propene)[161] 42
CH3CH2SHEthyl mercaptan[162] 62
Diacetylene, HCCCCH
Methyldiacetylene, HCCCCCH3
Cyanotetraacetylene, HCCCCCCCCCN
A number of polyyne-derived chemicals are among the heaviest molecules found in the interstellar medium.

Ten or more atoms (15)

AtomsMoleculeDesignationMassIons
10(CH3)2COAcetone[94][163] 58
10(CH2OH)2Ethylene glycol[164][165] 62
10CH3CH2CHOPropanal[121] 58
10CH3C5NMethyl-cyano-diacetylene[121] 89
11HC8CNCyanotetra-acetylene[32][159] 123
11C2H5OCHOEthyl formate[166] 74
11CH3COOCH3Methyl acetate[167] 74
11CH3C6HMethyltriacetylene[121][154] 88
12C6H6Benzene[138] 78
12C3H7CNn-Propyl cyanide[166] 69
12 (CH3)2CHCN iso-Propyl cyanide[168][169] 69
13HC10CNCyanodecapentayne[159] 147
13HC11NCyanopentaacetylene[159] 159
60C60Buckminsterfullerene
(C60 fullerene)
[170]
720C+
60
[171][172]
70C70C70 fullerene[170]840

Deuterated molecules (17)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen.

AtomsMoleculeDesignation
2HDHydrogen deuteride[173][174]
3H2D+, HD+
2
Trihydrogen cation[173][174]
3HDO, D2OHeavy water[175][176]
3DCNHydrogen cyanide[177]
3DCOFormyl radical[177]
3DNCHydrogen isocyanide[177]
3N2D+[177] 
4NH2D, NHD2, ND3Ammonia[174][178][179]
4HDCO, D2COFormaldehyde[174][180]
5NH3D+Ammonium ion[181][182]
7CH2DCCH, CH3CCDMethylacetylene[183][184]

Unconfirmed (13)

Evidence for the existence of the following molecules has been reported in scientific literature, but the detections are either described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

AtomsMoleculeDesignation
2SiHSilylidine[82]
4PH3Phosphine[185]
4MgCCHMagnesium monoacetylide[141]
4NCCPCyanophosphaethyne[141]
5C5Linear C5[39]
5H2NCO+[186]
4SiH3CNSilyl cyanide[141]
10H2NH2CCOOHGlycine[43][187]
12CO(CH2OH)2Dihydroxyacetone[188]
12C2H5OCH3Ethyl methyl ether[189]
18C
10
H+
8
Naphthalene cation[190]
24C24Graphene[191]
24C14H10Anthracene[10][192]
26C16H10Pyrene[10]

See also

References

  1. Shu, Frank H. (1982), The Physical Universe: An Introduction to Astronomy, University Science Books, ISBN 0-935702-05-9
  2. 1 2 3 Dalgarno, A. (2006), "Interstellar Chemistry Special Feature: The galactic cosmic ray ionization rate", Proceedings of the National Academy of Sciences 103 (33): 12269–12273, Bibcode:2006PNAS..10312269D, doi:10.1073/pnas.0602117103, PMC 1567869, PMID 16894166
  3. Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN 0-7503-0310-7
  4. Loeb, Abraham (October 2014). "The Habitable Epoch of the Early Universe". International Journal of Astrobiology 13 (04): 337–339. arXiv:1312.0613. Bibcode:2014IJAsB..13..337L. doi:10.1017/S1473550414000196. Retrieved 15 December 2014.
  5. Dreifus, Claudia (2 December 2014). "Much-Discussed Views That Go Way Back - Avi Loeb Ponders the Early Universe, Nature and Life". New York Times. Retrieved 3 December 2014.
  6. Woon, D. E. (May 2005), Methylidyne radical, The Astrochemist, retrieved 2007-02-13
  7. Ruaud, M.; Loison, J.C.; Hickson, K.M.; Gratier, P.; Hersant, F.; Wakelam, V. (2015). "Modeling Complex Organic Molecules in dense regions: Eley-Rideal and complex induced reaction". Monthly Notices of the Royal Astronomical Society 447 (4): 4004–4017. arXiv:1412.6256. Bibcode:2015MNRAS.447.4004R. doi:10.1093/mnras/stu2709.
  8. N.C. Wickramasinghe, Formaldehyde Polymers in Interstellar Space, Nature, 252, 462, 1974
  9. F. Hoyle and N.C. Wickramasinghe, Identification of the lambda 2200Å interstellar absorption feature, Nature, 270, 323, 1977
  10. 1 2 3 4 Battersby, S. (2004). "Space molecules point to organic origins". New Scientist. Retrieved 11 December 2009.
  11. 1 2 Mulas, G.; Malloci, G.; Joblin, C.; Toublanc, D. (2006). "Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the Red Rectangle". Astronomy and Astrophysics 446 (2): 537–549. arXiv:astro-ph/0509586. Bibcode:2006A&A...446..537M. doi:10.1051/0004-6361:20053738.
  12. García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V. (2010-10-28). "Formation Of Fullerenes In H-Containing Planatary Nebulae". The Astrophysical Journal Letters 724 (1): L39–L43. arXiv:1009.4357. Bibcode:2010ApJ...724L..39G. doi:10.1088/2041-8205/724/1/L39.
  13. Atkinson, Nancy (2010-10-27). "Buckyballs Could Be Plentiful in the Universe". Universe Today. Retrieved 2010-10-28.
  14. 1 2 3 Chow, Denise (26 October 2011). "Discovery: Cosmic Dust Contains Organic Matter from Stars". Space.com. Retrieved 2011-10-26.
  15. ScienceDaily Staff (26 October 2011). "Astronomers Discover Complex Organic Matter Exists Throughout the Universe". ScienceDaily. Retrieved 2011-10-27.
  16. Kwok, Sun; Zhang, Yong (26 October 2011). "Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features". Nature 479 (7371): 80–3. Bibcode:2011Natur.479...80K. doi:10.1038/nature10542. PMID 22031328.
  17. Gallori, Enzo (November 2010). "Astrochemistry and the origin of genetic material". Rendiconti Lincei 22 (2): 113–118. doi:10.1007/s12210-011-0118-4. Retrieved 2011-08-11.
  18. Martins, Zita (February 2011). "Organic Chemistry of Carbonaceous Meteorites". Elements 7 (1): 35–40. doi:10.2113/gselements.7.1.35. Retrieved 2011-08-11.
  19. Than, Ker (August 29, 2012). "Sugar Found In Space". National Geographic. Retrieved August 31, 2012.
  20. Staff (August 29, 2012). "Sweet! Astronomers spot sugar molecule near star". AP News. Retrieved August 31, 2012.
  21. Jørgensen, J. K.; Favre, C.; Bisschop, S.; Bourke, T.; Dishoeck, E.; Schmalzl, M. (2012). "Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA" (PDF). The Astrophysical Journal Letters. eprint 757: L4. arXiv:1208.5498. Bibcode:2012ApJ...757L...4J. doi:10.1088/2041-8205/757/1/L4.
  22. 1 2 Staff (September 20, 2012). "NASA Cooks Up Icy Organics to Mimic Life's Origins". Space.com. Retrieved September 22, 2012.
  23. 1 2 Gudipati, Murthy S.; Yang, Rui (September 1, 2012). "In-Situ Probing Of Radiation-Induced Processing Of Organics In Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-Of-Flight Mass Spectroscopic Studies". The Astrophysical Journal Letters 756 (1): L24. Bibcode:2012ApJ...756L..24G. doi:10.1088/2041-8205/756/1/L24. Retrieved September 22, 2012.
  24. Clavin, Whitney (10 February 2015). "Why Comets Are Like Deep Fried Ice Cream". NASA. Retrieved 10 February 2015.
  25. López-Puertas, Manuel (June 6, 2013). "PAH's in Titan's Upper Atmosphere". CSIC. Retrieved June 6, 2013.
  26. http://www.sciencenews.org/view/generic/id/351444/description/Interstellar_chemistry_makes_use_of_quantum_shortcut#comment_351468
  27. Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series 60: 819–878, Bibcode:1986ApJS...60..819C, doi:10.1086/191102
  28. Kaler, James B. (2002), The hundred greatest stars, Copernicus Series, Springer, ISBN 0-387-95436-8, retrieved 2011-05-09
  29. Marlaire, Ruth (3 March 2015). "NASA Ames Reproduces the Building Blocks of Life in Laboratory". NASA. Retrieved 5 March 2015.
  30. 1 2 Klemperer, William (2011), "Astronomical Chemistry", Annual Review of Physical Chemistry 62: 173–184, doi:10.1146/annurev-physchem-032210-103332
  31. The Structure of Molecular Cloud Cores, Centre for Astrophysics and Planetary Science, University of Kent, retrieved 2007-02-16
  32. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Ziurys, Lucy M. (2006), "The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life", Proceedings of the National Academy of Sciences 103 (33): 12274–12279, Bibcode:2006PNAS..10312274Z, doi:10.1073/pnas.0602277103, PMC 1567870, PMID 16894164
  33. 1 2 3 Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics 183 (1): L10–L12, Bibcode:1987A&A...183L..10C
  34. Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal 433 (2): 729–732, Bibcode:1994ApJ...433..729Z, doi:10.1086/174682
  35. Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal 694: L59–L63, Bibcode:2009ApJ...694L..59T, doi:10.1088/0004-637X/694/1/L59
  36. Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science 342 (6164): 1343–1345, doi:10.1126/science.124358213
  37. Quenqua, Douglas (13 December 2013). "Noble Molecules Found in Space". New York Times. Retrieved 13 December 2013.
  38. 1 2 3 Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal 438: 740–749, Bibcode:1995ApJ...438..740L, doi:10.1086/175119
  39. 1 2 3 Galazutdinov, G. A.; Musaev, F. A.; Krelowski, J. (2001), "On the detection of the linear C5 molecule in the interstellar medium", Monthly Notices of the Royal Astronomical Society 325 (4): 1332–1334, Bibcode:2001MNRAS.325.1332G, doi:10.1046/j.1365-8711.2001.04388.x
  40. Neufeld, D. A.; et al. (2006), "Discovery of interstellar CF+", Astronomy and Astrophysics 454 (2): L37–L40, arXiv:astro-ph/0603201, Bibcode:2006A&A...454L..37N, doi:10.1051/0004-6361:200600015
  41. 1 2 Adams, Walter S. (1941), "Some Results with the COUDÉ Spectrograph of the Mount Wilson Observatory", Astrophysical Journal 93: 11–23, Bibcode:1941ApJ....93...11A, doi:10.1086/144237
  42. 1 2 3 4 5 6 Smith, D. (1988), "Formation and Destruction of Molecular Ions in Interstellar Clouds", Philosophical Transactions of the Royal Society of London 324 (1578): 257–273, Bibcode:1988RSPTA.324..257S, doi:10.1098/rsta.1988.0016
  43. 1 2 3 4 5 6 7 8 Fuente, A.; et al. (2005), "Photon-dominated Chemistry in the Nucleus of M82: Widespread HOC+ Emission in the Inner 650 Parsec Disk", Astrophysical Journal 619 (2): L155–L158, arXiv:astro-ph/0412361, Bibcode:2005ApJ...619L.155F, doi:10.1086/427990
  44. 1 2 Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics 230: L9–L11, Bibcode:1990A&A...230L...9G
  45. 1 2 3 Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN 3-540-43362-7
  46. Agúndez, M.; et al. (2010-07-30), "Astronomical identification of CN, the smallest observed molecular anion", Astronomy & Astrophysics 517: L2, arXiv:1007.0662, Bibcode:2010A&A...517L...2A, doi:10.1051/0004-6361/201015186, retrieved 2010-09-03
  47. Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". LA Times. Retrieved March 9, 2014.
  48. Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau,J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science 343: 1490–1492. arXiv:1404.1380. Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. Retrieved March 9, 2014.
  49. Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters 419: L97, Bibcode:1993ApJ...419L..97L, doi:10.1086/187146
  50. Furuya, R. S.; et al. (2003), "Interferometric observations of FeO towards Sagittarius B2", Astronomy and Astrophysics 409 (2): L21–L24, Bibcode:2003A&A...409L..21F, doi:10.1051/0004-6361:20031304
  51. Adams, Walter S. (1970), "Rocket Observation of Interstellar Molecular Hydrogen", Astrophysical Journal 161: L81–L85, Bibcode:1970ApJ...161L..81C, doi:10.1086/180575
  52. Blake, G. A.; Keene, J.; Phillips, T. G. (1985), "Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1", Astrophysical Journal, Part 1 295: 501–506, Bibcode:1985ApJ...295..501B, doi:10.1086/163394
  53. De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters 751 (2): L37, Bibcode:2012ApJ...751L..37D, doi:10.1088/2041-8205/751/2/L37
  54. Neufeld, David A.; et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters 488 (2): L141–L144, arXiv:astro-ph/9708013, Bibcode:1997ApJ...488L.141N, doi:10.1086/310942
  55. Wyrowski, F.; et al. (2009), "First interstellar detection of OH+", Astronomy & Astrophysics 518: A26, arXiv:1004.2627, Bibcode:2010A&A...518A..26W, doi:10.1051/0004-6361/201014364
  56. 1 2 Meyer, D. M.; Roth, K. C. (1991), "Discovery of interstellar NH", Astrophysical Journal Letters 376: L49–L52, Bibcode:1991ApJ...376L..49M, doi:10.1086/186100
  57. Wagenblast, R.; et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society 260 (2): 420–424, Bibcode:1993MNRAS.260..420W, doi:10.1093/mnras/260.2.420
  58. <Please add first missing authors to populate metadata.> (June 9, 2004), Astronomers Detect Molecular Nitrogen Outside Solar System, Space Daily, retrieved 2010-06-25
  59. Knauth, D. C; et al. (2004), "The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations", Nature 429 (6992): 636–638, Bibcode:2004Natur.429..636K, doi:10.1038/nature02614, PMID 15190346, retrieved 2010-06-25
  60. McGonagle, D.; et al. (1990), "Detection of nitric oxide in the dark cloud L134N", Astrophysical Journal, Part 1 359: 121–124, Bibcode:1990ApJ...359..121M, doi:10.1086/169040
  61. Whiteoak, J. B.; Gardner, F. F. (1985), "Interstellar NaI absorption towards the stellar association ARA OB1", Astronomical Society of Australia, Proceedings (Sydney) 6 (2): 164–171, Bibcode:1985PASAu...6..164W
  62. Staff writers (March 27, 2007), Elusive oxygen molecule finally discovered in interstellar space, Physorg.com, retrieved 2007-04-02
  63. Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters 321: L81–L85, Bibcode:1987ApJ...321L..81Z, doi:10.1086/185010
  64. Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters 666: L29–L32, Bibcode:2007ApJ...666L..29T, doi:10.1086/521361
  65. Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal 528 (1): L33–L36, arXiv:astro-ph/9911080, Bibcode:2000ApJ...528L..33Y, doi:10.1086/312420, PMID 10587489
  66. Menten, K. M.; et al. (2011), "Submillimeter Absorption from SH+, a New Widespread Interstellar Radical, 13CH+ and HCl", Astronomy & Astrophysics 525: A77, arXiv:1009.2825, Bibcode:2011A&A...525A..77M, doi:10.1051/0004-6361/201014363, retrieved 2010-12-03.
  67. 1 2 3 Pascoli, G.; Comeau, M. (1995), "Silicon Carbide in Circumstellar Environment", Astrophysics and Space Science 226: 149–163, Bibcode:1995Ap&SS.226..149P, doi:10.1007/BF00626907
  68. 1 2 Kamiński, T.; et al. (2013), "Pure rotational spectra of TiO and TiO2 in VY Canis Majoris", Astronomy and Astrophysics 551: A113, arXiv:1301.4344, Bibcode:2013A&A...551A.113K, doi:10.1051/0004-6361/201220290
  69. 1 2 Geballe, T. R.; Oka, T. (1996), "Detection of H3+ in Interstellar Space", Nature 384 (6607): 334–335, Bibcode:1996Natur.384..334G, doi:10.1038/384334a0, PMID 8934516
  70. Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal 712: L93–L97, Bibcode:2010ApJ...712L..93T, doi:10.1088/2041-8205/712/1/L93
  71. Anderson, J. K.; et al. (2014), "Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry", Astrophysical Journal 795: L1, Bibcode:2014ApJ...795L...1A, doi:10.1088/2041-8205/795/1/L1
  72. Ohishi, Masatoshi, Masatoshi; et al. (1991), "Detection of a new carbon-chain molecule, CCO", Astrophysical Journal Letters 380: L39–L42, Bibcode:1991ApJ...380L..39O, doi:10.1086/186168
  73. 1 2 3 4 Irvine, William M.; et al. (1988), "Newly detected molecules in dense interstellar clouds", Astrophysical Letters and Communications 26: 167–180, Bibcode:1988ApL&C..26..167I, PMID 11538461
  74. 1 2 Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal 677 (2): L101–L104, Bibcode:2008ApJ...677L.101H, doi:10.1086/588024
  75. Whittet, D. C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society 252: 63–67, Bibcode:1991MNRAS.252...63W, doi:10.1093/mnras/252.1.63
  76. Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters 733 (2): L36, Bibcode:2011ApJ...733L..36Z, doi:10.1088/2041-8205/733/2/L36
  77. Lis, D. C.; et al. (2010-10-01), "Herschel/HIFI discovery of interstellar chloronium (H2Cl+)", Astronomy & Astrophysics 521: L9, arXiv:1007.1461, Bibcode:2010A&A...521L...9L, doi:10.1051/0004-6361/201014959.
  78. Europe's space telescope ISO finds water in distant places, ESO, April 29, 1997, archived from the original on 2006-12-22, retrieved 2007-02-08
  79. Ossenkopf, V.; et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics 518: L111, arXiv:1005.2521, Bibcode:2010A&A...518L.111O, doi:10.1051/0004-6361/201014577.
  80. Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters 541: L11–L14, arXiv:1205.0361, Bibcode:2012A&A...541L..11P, doi:10.1051/0004-6361/201219379
  81. Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal 163: L47–L52, Bibcode:1971ApJ...163L..47S, doi:10.1086/180664
  82. 1 2 Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series 132 (2): 281–364, Bibcode:2001ApJS..132..281S, doi:10.1086/318951
  83. 1 2 Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters 303: L71–L74, Bibcode:1986ApJ...303L..71S, doi:10.1086/184655
  84. 1 2 3 4 5 6 Kawaguchi, Kentarou; et al. (1994), "Detection of a new molecular ion HC3NH(+) in TMC-1", Astrophysical Journal 420: L95, Bibcode:1994ApJ...420L..95K, doi:10.1086/187171
  85. Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal 662 (2): L91, Bibcode:2007ApJ...662L..91A, doi:10.1086/519561, retrieved 2007-06-02
  86. Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal 582 (2): L101–L104, Bibcode:2003ApJ...582L.101S, doi:10.1086/367628, retrieved 2008-09-14
  87. Hollis, J. M.; et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms (San Francisco: ASP) 16: 407–412, Bibcode:1991ASPC...16..407H
  88. van Dishoeck, Ewine F.; et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters 416: L83–L86, Bibcode:1993ApJ...416L..83V, doi:10.1086/187076
  89. Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1 387: 417–429, Bibcode:1992ApJ...387..417W, doi:10.1086/171094
  90. Ziurys, L. M.; et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters 436: L181–L184, Bibcode:1994ApJ...436L.181Z, doi:10.1086/187662
  91. Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters 262: L1–L5, Bibcode:1982ApJ...262L...1H, doi:10.1086/183900
  92. Goldsmith, P. F.; Linke, R. A. (1981), "A study of interstellar carbonyl sulfide", Astrophysical Journal, Part 1 245: 482–494, Bibcode:1981ApJ...245..482G, doi:10.1086/158824
  93. Phillips, T. G.; Knapp, G. R. (1980), "Interstellar Ozone", American Astronomical Society Bulletin 12: 440, Bibcode:1980BAAS...12..440P
  94. 1 2 3 4 5 6 7 8 9 10 Johansson, L. E. B.; et al. (1984), "Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz", Astronomy and Astrophysics 130 (2): 227–256, Bibcode:1984A&A...130..227J
  95. Cernicharo, José; et al. (2015), "Discovery of SiCSi in IRC+10216: a Missing Link Between Gas and Dust Carriers OF Si–C Bonds", Astrophysical Journal Letters 806: L3, Bibcode:2015ApJ...806L.3C, doi:10.1088/2041-8025
  96. Guélin, M.; et al. (2004), "Astronomical detection of the free radical SiCN", Astronomy and Astrophysics 363: L9–L12, Bibcode:2000A&A...363L...9G
  97. Guélin, M.; et al. (2004), "Detection of the SiNC radical in IRC+10216", Astronomy and Astrophysics 426 (2): L49–L52, Bibcode:2004A&A...426L..49G, doi:10.1051/0004-6361:200400074
  98. 1 2 Snyder, Lewis E.; et al. (1999), "Microwave Detection of Interstellar Formaldehyde", Physical Review Letters 61 (2): 77–115, Bibcode:1969PhRvL..22..679S, doi:10.1103/PhysRevLett.22.679
  99. Feuchtgruber, H.; et al. (June 2000), "Detection of Interstellar CH3", The Astrophysical Journal 535 (2): L111–L114, arXiv:astro-ph/0005273, Bibcode:2000ApJ...535L.111F, doi:10.1086/312711, PMID 10835311
  100. 1 2 Irvine, W. M.; et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society 16: 877, Bibcode:1984BAAS...16..877I
  101. Pety, J.; et al. (2012), "The IRAM-30 m line survey of the Horsehead PDR. II. First detection of the l-C3MH+ hydrocarbon cation", Astronomy & Astrophysics 548: A68, arXiv:1210.8178, Bibcode:2012A&A...548A..68P, doi:10.1051/0004-6361/201220062
  102. Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics 239: 319–325, Bibcode:1990A&A...239..319M
  103. Wootten, Alwyn; et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters 380: L79–L83, Bibcode:1991ApJ...380L..79W, doi:10.1086/186178
  104. Ridgway, S. T.; et al. (1976), "Circumstellar acetylene in the infrared spectrum of IRC+10216", Nature 264: 345, 346, Bibcode:1976Natur.264..345R, doi:10.1038/264345a0
  105. Ohishi, Masatoshi; et al. (1994), "Detection of a new interstellar molecule, H2CN", Astrophysical Journal Letters 427: L51–L54, Bibcode:1994ApJ...427L..51O, doi:10.1086/187362
  106. Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics 244: 181–189, Bibcode:1991A&A...244..181M, PMID 11538284
  107. Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics 244: L21–L24, Bibcode:1991A&A...244L..21G
  108. Agúndez, M.; et al. (2015), "Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical", Astronomy and Astrophysics 577: L5, Bibcode:2015A%26A...577L...5A, doi:10.1051/0004-6361/201526317
  109. Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1 334: 175–181, Bibcode:1988ApJ...334..175M, doi:10.1086/166827
  110. Marcelino, Núria; et al. (2009), "Discovery of fulminic acid, HCNO, in dark clouds", Astrophysical Journal 690: L27–L30, arXiv:0811.2679, Bibcode:2009ApJ...690L..27M, doi:10.1088/0004-637X/690/1/L27
  111. Brünken, S.; et al. (2010-07-22), "Interstellar HOCN in the Galactic center region", Astronomy & Astrophysics 516: A109, arXiv:1005.2489, Bibcode:2010A&A...516A.109B, doi:10.1051/0004-6361/200912456
  112. Bergman; Parise; Liseau; Larsson; Olofsson; Menten; Güsten (2011), "Detection of interstellar hydrogen peroxide", Astronomy & Astrophysics 531: L8, arXiv:1105.5799, Bibcode:2011A&A...531L...8B, doi:10.1051/0004-6361/201117170.
  113. 1 2 Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters 234: L143–L145, Bibcode:1979ApJ...234L.143F, doi:10.1086/183126
  114. 1 2 Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics 138 (1): L5–L8, Bibcode:1984A&A...138L...5N
  115. Halfen, D. T.; et al. (September 2009), "Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN", The Astrophysical Journal Letters 702 (2): L124–L127, Bibcode:2009ApJ...702L.124H, doi:10.1088/0004-637X/702/2/L124
  116. Cabezas, C.; et al. (2013), "Laboratory and Astronomical Discovery of Hydromagnesium Isocyanide", Astrophysical Journal 775: 133, arXiv:1309.0371, Bibcode:2013ApJ...775..133C, doi:10.1088/0004-637X/775/2/133
  117. Butterworth, Anna L.; et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society 347 (3): 807–812, Bibcode:2004MNRAS.347..807B, doi:10.1111/j.1365-2966.2004.07251.x
  118. http://www.astro.uni-koeln.de/site/vorhersagen/molecules/ism/Ammonium.html
  119. http://iopscience.iop.org/2041-8205/771/1/L10/
  120. Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters 759 (2): L43–L46, Bibcode:2012ApJ...759L..43C, doi:10.1088/2041-8205/759/2/L43
  121. 1 2 3 4 5 6 7 8 Finley, Dave (August 7, 2006), Researchers Use NRAO Telescope to Study Formation Of Chemical Precursors to Life, National Radio Astronomy Observatory, retrieved 2006-08-10
  122. 1 2 3 4 5 6 7 Fossé, David; et al. (2001), "Molecular Carbon Chains and Rings in TMC-1", Astrophysical Journal 552 (1): 168–174, arXiv:astro-ph/0012405, Bibcode:2001ApJ...552..168F, doi:10.1086/320471, retrieved 2008-09-14
  123. Dickens, J. E.; et al. (1997), "Hydrogenation of Interstellar Molecules: A Survey for Methylenimine (CH2NH)", Astrophysical Journal 479 (1 Pt 1): 307–12, Bibcode:1997ApJ...479..307D, doi:10.1086/303884, PMID 11541227
  124. McGuire, B.A.; et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters 758 (2): L33–L38, arXiv:1209.1590, Bibcode:2012ApJ...758L..33M, doi:10.1088/2041-8205/758/2/L33
  125. Ohishi, Masatoshi; et al. (1996), "Detection of a New Interstellar Molecular Ion, H2COH+ (Protonated Formaldehyde)", Astrophysical Journal 471 (1): L61–4, Bibcode:1996ApJ...471L..61O, doi:10.1086/310325, PMID 11541244
  126. Cernicharo, J.; et al. (2007), "Astronomical detection of C4H<sup−, the second interstellar anion", Astronomy and Astrophysics 61 (2): L37–L40, Bibcode:2007A&A...467L..37C, doi:10.1051/0004-6361:20077415
  127. 1 2 Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics 81 (1–2): 245–250, Bibcode:1980A&A....81..245W
  128. Kawaguchi, Kentarou; et al. (1992), "Detection of isocyanoacetylene HCCNC in TMC-1", Astrophysical Journal 386 (2): L51–L53, Bibcode:1992ApJ...386L..51K, doi:10.1086/186290
  129. Turner, B. E.; et al. (1975), "Microwave detection of interstellar cyanamide", Astrophysical Journal 201: L149–L152, Bibcode:1975ApJ...201L.149T, doi:10.1086/181963
  130. Agúndez, M.; et al. (2015), "Probing non-polar interstellar molecules through their protonated form: Detection of protonated cyanogen (NCCNH+)", Astronomy and Astrophysics 579: L10, arXiv:1506.07043, Bibcode:2015A%26A...579L..10A, doi:10.1051/0004-6361/201526650
  131. Remijan, Anthony J.; et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal 675 (2): L85–L88, Bibcode:2008ApJ...675L..85R, doi:10.1086/533529
  132. Goldhaber, D. M.; Betz, A. L. (1984), "Silane in IRC +10216", Astrophysical Journal Letters 279: –L55–L58, Bibcode:1984ApJ...279L..55G, doi:10.1086/184255
  133. 1 2 3 4 Hollis, J. M.; et al. (2006), "Detection of Acetamide (CH3CONH2): The Largest Interstellar Molecule with a Peptide Bond", Astrophysical Journal 643 (1): L25–L28, Bibcode:2006ApJ...643L..25H, doi:10.1086/505110
  134. Zaleski, D. P.; et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters 765: L109, arXiv:1302.0909, Bibcode:2013ApJ...765L..10Z, doi:10.1088/2041-8205/765/1/L10
  135. Betz, A. L. (1981), "Ethylene in IRC +10216", Astrophysical Journal Letters 244: –L105, Bibcode:1981ApJ...244L.103B, doi:10.1086/183490
  136. 1 2 3 4 5 Remijan, Anthony J.; et al. (2005), "Interstellar Isomers: The Importance of Bonding Energy Differences", Astrophysical Journal 632 (1): 333–339, arXiv:astro-ph/0506502, Bibcode:2005ApJ...632..333R, doi:10.1086/432908
  137. "Complex Organic Molecules Discovered in Infant Star System". NRAO (Astrobiology Web). 8 April 2015. Retrieved 2015-04-09.
  138. 1 2 3 Cernicharo, José; et al. (1997), "Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618", Astrophysical Journal Letters 546 (2): L123–L126, Bibcode:2001ApJ...546L.123C, doi:10.1086/318871
  139. Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics 335: L1–L4, arXiv:astro-ph/9805105, Bibcode:1998A&A...335L...1G
  140. Irvine, W. M.; et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters 335: L89–L93, Bibcode:1988ApJ...335L..89I, doi:10.1086/185346
  141. 1 2 3 4 Agúndez, M.; et al. (2014), "New molecules in IRC +10216: confirmation of C5S and tentative identification of MgCCH, NCCP, and SiH3CN", Astronomy and Astrophysics 570: A45, Bibcode:2014A%26A...570A..45A, doi:10.1051/0004-6361/201424542
  142. 1 2 Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space, National Radio Astronomy Observatory, October 1, 2001, retrieved 2006-12-20
  143. 1 2 Dickens, J. E.; et al. (1997), "Detection of Interstellar Ethylene Oxide (c-C2H4O)", The Astrophysical Journal 489 (2): 753–757, Bibcode:1997ApJ...489..753D, doi:10.1086/304821, PMID 11541726
  144. Kaifu, N.; Takagi, K.; Kojima, T. (1975), "Excitation of interstellar methylamine", Astrophysical Journal 198: L85–L88, Bibcode:1975ApJ...198L..85K, doi:10.1086/181818
  145. McCarthy, M. C.; et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H", Astrophysical Journal 652 (2): L141–L144, Bibcode:2006ApJ...652L.141M, doi:10.1086/510238
  146. Halfven, D. T.; et al. (2015), "INTERSTELLAR DETECTION OF METHYL ISOCYANATE CH3NCO IN Sgr B2(N): A LINK FROM MOLECULAR CLOUDS TO COMETS", Astrophysical Journal 812: L5, arXiv:1509.09305, Bibcode:2015ApJ...812L...5H, doi:10.1088/2041-8205/812/1/L5
  147. 1 2 Mehringer, David M.; et al. (1997), "Detection and Confirmation of Interstellar Acetic Acid", Astrophysical Journal Letters 480: L71, Bibcode:1997ApJ...480L..71M, doi:10.1086/310612
  148. 1 2 Lovas, F. J.; et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters 637 (1): L37–L40, Bibcode:2006ApJ...637L..37L, doi:10.1086/500431
  149. 1 2 Sincell, Mark (June 27, 2006), "The Sweet Signal of Sugar in Space", Science (American Association for the Advancement of Science), retrieved 2016-01-14
  150. Loomis, R. A.; et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters 765: L9, arXiv:1302.1121, Bibcode:2013ApJ...765L...9L, doi:10.1088/2041-8205/765/1/L9
  151. Guelin, M.; et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics 317: L37–L40, Bibcode:1997A&A...317L...1G
  152. Belloche, A.; et al. (2008), "Detection of amino acetonitrile in Sgr B2(N)", Astronomy & Astrophysics 482: 179–196, arXiv:0801.3219, Bibcode:2008A&A...482..179B, doi:10.1051/0004-6361:20079203
  153. Remijan, Anthony J.; et al. (2014), "OBSERVATIONAL RESULTS OF A MULTI-TELESCOPE CAMPAIGN IN SEARCH OF INTERSTELLAR UREA [(NH2)2CO]", Astrophysical Journal 783 (2): 77, arXiv:1401.4483, Bibcode:2014ApJ...783...77R, doi:10.1088/0004-637X/783/2/77
  154. 1 2 Remijan, Anthony J.; et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal 643 (1): L37–L40, Bibcode:2006ApJ...643L..37R, doi:10.1086/504918
  155. Snyder, L. E.; et al. (1974), "Radio Detection of Interstellar Dimethyl Ether", Astrophysical Journal 191: L79–L82, Bibcode:1974ApJ...191L..79S, doi:10.1086/181554
  156. Zuckerman, B.; et al. (1975), "Detection of interstellar trans-ethyl alcohol", Astrophysical Journal 196 (2): L99–L102, Bibcode:1975ApJ...196L..99Z, doi:10.1086/181753
  157. Cernicharo, J.; Guelin, M. (1996), "Discovery of the C8H radical", Astronomy and Astrophysics 309: L26–L30, Bibcode:1996A&A...309L..27C
  158. Brünken, S.; et al. (2007), "Detection of the Carbon Chain Negative Ion C8H in TMC-1", Astrophysical Journal 664 (1): L43–L46, Bibcode:2007ApJ...664L..43B, doi:10.1086/520703
  159. 1 2 3 4 Bell, M. B.; et al. (1997), "Detection of HC11N in the Cold Dust Cloud TMC-1", Astrophysical Journal Letters 483 (1): L61–L64, arXiv:astro-ph/9704233, Bibcode:1997ApJ...483L..61B, doi:10.1086/310732
  160. Kroto, H. W.; et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal 219: L133–L137, Bibcode:1978ApJ...219L.133K, doi:10.1086/182623
  161. Marcelino, N.; et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal 665 (2): L127–L130, arXiv:0707.1308, Bibcode:2007ApJ...665L.127M, doi:10.1086/521398
  162. Kolesniková, L.; et al. (2014), "Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion", Astrophysical Journal Letters 784 (1): L7, arXiv:1401.7810, Bibcode:2014ApJ...784L...7K, doi:10.1088/2041-8205/784/1/L7
  163. Snyder, Lewis E.; et al. (2002), "Confirmation of Interstellar Acetone", The Astrophysical Journal 578 (1): 245–255, Bibcode:2002ApJ...578..245S, doi:10.1086/342273
  164. Hollis, J. M.; et al. (2002), "Interstellar Antifreeze: Ethylene Glycol", Astrophysical Journal 571 (1): L59–L62, Bibcode:2002ApJ...571L..59H, doi:10.1086/341148, retrieved 2010-07-18
  165. Hollis, J. M. (2005), "Complex Molecules and the GBT: Is Isomerism the Key?" (PDF), Complex Molecules and the GBT: Is Isomerism the Key?, Proceedings of the IAU Symposium 231, Astrochemistry throughout the Universe, Asilomar, CA, pp. 119–127
  166. 1 2 Belloche, A.; et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics 499 (1): 215–232, arXiv:0902.4694, Bibcode:2009A&A...499..215B, doi:10.1051/0004-6361/200811550
  167. Tercero, B.; et al. (2013), "Discovery of Methyl Acetate and Gauche Ethyl Formate in Orion", Astrophysical Journal Letters 770: L13, arXiv:1305.1135, Bibcode:2013ApJ...770L..13T, doi:10.1088/2041-8205/770/1/L13
  168. Eyre, Michael (26 September 2014). "Complex organic molecule found in interstellar space". BBC News. Retrieved 2014-09-26.
  169. Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science 345 (6204): 1584–1587. arXiv:1410.2607. Bibcode:2014Sci...345.1584B. doi:10.1126/science.1256678. Retrieved 2014-09-26.
  170. 1 2 Cami, Jan; et al. (July 22, 2010), "Detection of C60 and C70 in a Young Planetary Nebula", Science 329 (5996): 1180–2, Bibcode:2010Sci...329.1180C, doi:10.1126/science.1192035, PMID 20651118
  171. Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature 369 (6478): 296–298, Bibcode:1994Natur.369..296F, doi:10.1038/369296a0.
  172. Berné, Olivier; Mulas, Giacomo; Joblin, Christine (2013), "Interstellar C60+", Astronomy & Astrophysics 550: L4, arXiv:1211.7252, Bibcode:2013A&A...550L...4B, doi:10.1051/0004-6361/201220730
  173. 1 2 Lacour, S.; et al. (2005), "Deuterated molecular hydrogen in the Galactic ISM. New observations along seven translucent sightlines", Astronomy and Astrophysics 430 (3): 967–977, arXiv:astro-ph/0410033, Bibcode:2005A&A...430..967L, doi:10.1051/0004-6361:20041589
  174. 1 2 3 4 Ceccarelli, Cecilia (2002), "Millimeter and infrared observations of deuterated molecules", Planetary and Space Science 50 (12–13): 1267–1273, Bibcode:2002P&SS...50.1267C, doi:10.1016/S0032-0633(02)00093-4
  175. Green, Sheldon (1989), "Collisional excitation of interstellar molecules - Deuterated water, HDO", Astrophysical Journal Supplement Series 70: 813–831, Bibcode:1989ApJS...70..813G, doi:10.1086/191358
  176. Butner, H. M.; et al. (2007), "Discovery of interstellar heavy water", Astrophysical Journal 659 (2): L137–L140, Bibcode:2007ApJ...659L.137B, doi:10.1086/517883
  177. 1 2 3 4 Turner, B. E.; Zuckerman, B. (1978), "Observations of strongly deuterated molecules - Implications for interstellar chemistry", Astrophysical Journal Letters 225: L75–L79, Bibcode:1978ApJ...225L..75T, doi:10.1086/182797
  178. Lis, D. C.; et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal 571 (1): L55–L58, Bibcode:2002ApJ...571L..55L, doi:10.1086/341132.
  179. Hatchell, J. (2003), "High NH2D/NH3 ratios in protostellar cores", Astronomy and Astrophysics 403 (2): L25–L28, arXiv:astro-ph/0302564, Bibcode:2003A&A...403L..25H, doi:10.1051/0004-6361:20030297.
  180. Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters 362: L29–L33, Bibcode:1990ApJ...362L..29T, doi:10.1086/185840.
  181. Cernicharo, J.; et al. (2013), "Detection of the Ammonium ion in space", Astrophysical Journal Letters 771: L10, arXiv:1306.3364, Bibcode:2013ApJ...771L..10C, doi:10.1088/2041-8205/771/1/L10
  182. Doménech, J. L.; et al. (2013), "Improved Determinination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters 771: L11, arXiv:1306.3792, Bibcode:2013ApJ...771L..11D, doi:10.1088/2041-8205/771/1/L10
  183. Gerin, M.; et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics 253 (2): L29–L32, Bibcode:1992A&A...253L..29G.
  184. Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal 627 (2): L117–L120, Bibcode:2005ApJ...627L.117M, doi:10.1086/432415.
  185. Agúndez, M.; et al. (2008-06-04), "Tentative detection of phosphine in IRC +10216", Astronomy & Astrophysics 485 (3): L33, arXiv:0805.4297, Bibcode:2008A&A...485L..33A, doi:10.1051/0004-6361:200810193
  186. Gupta, H.; et al. (2013), "Laboratory Measurements and Tentative Astronomical Identification of H2NCO+", Astrophysical Journal Letters 778: L1, Bibcode:2013ApJ...778L...1G, doi:10.1088/2041-8205/778/1/L1
  187. Kuan, Y. J.; et al. (2003), "Interstellar Glycine", Astrophysical Journal 593 (2): 848–867, Bibcode:2003ApJ...593..848K, doi:10.1086/375637.
  188. Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters 624 (1): L33–L36, Bibcode:2005ApJ...624L..33W, doi:10.1086/430407
  189. Fuchs, G. W.; et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics 444 (2): 521–530, arXiv:astro-ph/0508395, Bibcode:2005A&A...444..521F, doi:10.1051/0004-6361:20053599, retrieved 2010-07-18
  190. Iglesias-Groth, S.; et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters 685: L55–L58, arXiv:0809.0778, Bibcode:2008ApJ...685L..55I, doi:10.1086/592349 - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  191. García-Hernández, D. A.; et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters 737 (2): L30, arXiv:1107.2595, Bibcode:2011ApJ...737L..30G, doi:10.1088/2041-8205/737/2/L30, retrieved 2011-08-12.
  192. Iglesias-Groth, S.; et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society 407 (4): 2157–2165, arXiv:1005.4388, Bibcode:2010MNRAS.407.2157I, doi:10.1111/j.1365-2966.2010.17075.x

External links

This article is issued from Wikipedia - version of the Thursday, May 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.