Lithium tantalate

Lithium tantalate
Names
IUPAC name
Lithium tantalate
Other names
Lithium Metatantalate
Identifiers
12031-66-2 YesY
PubChem 159405
RTECS number WW55470000
Properties
LiTaO3
Molar mass 235.887 g/mol
Density 7.46 g/cm3, solid
Melting point 1,650 °C (3,000 °F; 1,920 K)
?/100 ml (25 °C)
Structure
Space group R3c
Related compounds
Other anions
LiNbO3
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solidliquidgas
UV, IR, NMR, MS
YesY verify (what is YesYN ?)
Infobox references
Wikinews has related news: Tabletop fusion may lead to neutron source

Lithium tantalate (LiTaO3), is a crystalline solid which possesses unique optical, piezoelectric and pyroelectric properties which make it valuable for nonlinear optics, passive infrared sensors such as motion detectors, terahertz generation and detection, surface acoustic wave applications, cell phones and possibly pyroelectric nuclear fusion. Considerable information is available from commercial sources about this salt.

Pyroelectric fusion

Main article: Pyroelectric fusion

According to an April 2005 Nature article, Brian Naranjo, Jim Gimzewski and Seth Putterman at UCLA applied a large temperature difference to a lithium tantalate crystal producing a large enough charge to generate and accelerate a beam of deuterium nuclei into a deuteriated target resulting in the production of a small flux of helium-3 and neutrons through nuclear fusion without extreme heat or pressure. Their results have been replicated.[1]

It is unlikely to be useful for electricity generation since the energy required to produce the fusion reactions exceeded the energy produced by them. It is thought that the technique might be useful for small neutron generators, especially if the deuterium beam is replaced by a tritium one. Comparing this with the electrostatic containment of ionic plasma to achieve fusion in a "fusor" or other IEC, this method focuses electrical acceleration to a much smaller non-ionized deuterium target without heat.

Water and freezing

A scientific paper published in February 2010 shows a difference in the temperature and mechanism of freezing water to ice, depending on the charge applied to a surface of pyroelectric LiTaO3 crystals.[2]

References

  1. B. Naranjo, J.K. Gimzewski and S. Putterman (2005). "Observation of nuclear fusion driven by a pyroelectric crystal". Nature 434 (7037): 1115–1117. doi:10.1038/nature03575. PMID 15858570.
  2. D. Ehre, E. Lavert, M. Lahav, I. Lubomirsky (2010). "Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials". Science 327 (5966): 672–675. doi:10.1126/science.1178085.

Further reading

This article is issued from Wikipedia - version of the Monday, November 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.