Path space fibration
In algebraic topology, the path space fibration over a based space (X, *)[1] is a fibration of the form
where
- is the space called the path space of X.
- is the fiber of over the base point of X; thus it is the loop space of X.
The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration.
Mapping path space
If ƒ:X→Y is any map, then the mapping path space Pƒ of ƒ is the pullback of along ƒ. Since a fibration pullbacks to a fibration, if Y is based, one has the fibration
where and is the homotopy fiber, the pullback of along ƒ.
Note also ƒ is the composition
where the first map φ sends x to , the constant path with value ƒ(x). Clearly, φ is a homotopy equivalence; thus, the above decomposition says that any map is a fibration up to homotopy equivalence.
If ƒ is a fibration to begin with, then is a fiber-homotopy equivalence and, consequently,[2] the fibers of f over the path-component of the base point are homotopy equivalent to the homotopy fiber of ƒ.
Moore's path space
By definition, a path in a space X is a map from the unit interval I to X. Again by definition, the product of two paths α, β such that α(1) = β(0) is the path β · α: I → X given by:
- .
This product, in general, fails to be associative on the nose: (γ · β) · α ≠ γ · (β · α), as seen directly. One solution to this failure is to pass to homotopy classes: one has [(γ · β) · α ] = [γ · (β · α)]. Another solution is to work with paths of arbitrary length, leading to the notions of Moore's path space and Moore's path space fibration.[3]
Given a based space (X, *), we let
An element f of this set has the unique extension to the interval such that . Thus, the set can be identified as a subspace of . The resulting space is called Moore's path space of X. Then, just as before, there is a fibration, Moore's path space fibration:
where p sends each f: [0, r] → X to f(r) and is the fiber. It turns out that and are homotopy equivalent.
Now, we define the product map:
by: for and ,
- .
This product is manifestly associative. In particular, with μ restricted to Ω'X × Ω'X, we have that Ω'X is a topological monoid (in the category of all spaces). Moreover, this monoid Ω'X acts on P'X through the original μ. In fact, is an Ω'X-fibration.[4]
Notes
- ↑ Throughout the article, spaces are objects of the category of "reasonable" spaces; e.g., the category of compactly generated weak Haudsorff spaces.
- ↑ using the change of fiber
- ↑ Whitehead 1979, Ch. III, § 2.
- ↑ Let G = Ω'X and P = P'X. That G preserves the fibers is clear. To see, for each γ in P, the map is a weak equivalence, we can use the following lemma:
Lemma — Let p: D → B, q: E → B be fibrations over an unbased space B, f: D → E a map over B. If B is path-connected, then the following are equivalent:We apply the lemma with where α is a path in P and I → X is t → the end-point of α(t). Since if γ is the constant path, the claim follows from the lemma. (In a nutshell, the lemma follows from the long exact homotopy sequence and the five lemma.)
- f is a weak equivalence.
- is a weak equivalence for some b in B.
- is a weak equivalence for every b in B.
References
- James F. Davis, Paul Kirk, Lecture Notes in Algebraic Topology
- May, J. A Concise Course in Algebraic Topology
- George William Whitehead (1978). Elements of homotopy theory. Graduate Texts in Mathematics 61 (3rd ed.). New York-Berlin: Springer-Verlag. pp. xxi+744. ISBN 978-0-387-90336-1. MR 0516508. Retrieved September 6, 2011.