Instructions per second

Instructions per second (IPS) is a measure of a computer's processor speed. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as SPECint or Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

The term is commonly used in association with a numeric value such as thousand instructions per second (kIPS), million instructions per second (MIPS), and billion instructions per second (GIPS).

Thousand instructions per second (kIPS)

Before standard benchmarks were available, average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo Instructions Per Second (kIPS). The most famous was the Gibson Mix,[1] produced by Jack Clark Gibson of IBM for scientific applications. Other ratings, such as the ADP mix which does not include floating point operations, were produced for commercial applications. Computer Speeds From Instruction Mixes pre-1960 to 1971 has results for around 175 computers, providing scientific (Gibson) and commercial (ADP) ratings. For IBM, the earliest Gibson Mix calculations shown are the 1954 IBM 650 at 0.06 kIPS and 1956 IBM 705 at 0.5 kIPS. The results are mainly for IBM and others known as the BUNCH — Burroughs, UNIVAC, NCR, CDC, and Honeywell.

The thousand instructions per second (kIPS) unit is rarely used today, as most current microprocessors can execute at least a million instructions per second.

Millions of instructions per second (MIPS)

Not to be confused with MIPS instruction set.

The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions (problematic in CPU pipelines). CPU instruction rates are different from clock frequencies, usually reported in Hz, as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously. MIPS can be useful when comparing performance between processors made with similar architecture (e.g. Microchip branded microcontrollers). They are difficult to compare between differing CPU architectures.[2]

For this reason, MIPS has become not a measure of instruction execution speed, but task performance speed compared to a reference. In the late 1970s, minicomputer performance was compared using VAX MIPS, where computers were measured on a task and their performance rated against the VAX 11/780 that was marketed as a 1 MIPS machine. (The measure was also known as the VAX Unit of Performance or VUP.) This was chosen because the 11/780 was roughly equivalent in performance to an IBM System/370 model 158-3, which was commonly accepted in the computing industry as running at 1 MIPS.

Many minicomputer performance claims were based on the Fortran version of the Whetstone benchmark, giving Millions of Whetstone Instructions Per Second (MWIPS). The VAX 11/780 with FPA (1977) runs at 1.02 MWIPS.

Effective MIPS speeds are highly dependent on the programming language used. The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages. The first PC compiler was for BASIC (1982) when a 4.8 MHz 8088/87 CPU obtained 0.01 MWIPS. Results on a 2.4 GHz Intel Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC Interpreter, 59 MWIPS via BASIC Compiler, 347 MWIPS using 1987 Fortran, 1,534 MWIPS through HTML/Java to 2,403 MWIPS using a modern C/C++ compiler.

For the most early 8-bit and 16-bit microprocessors, performance was measured in thousand instructions per second (1 kIPS = 0.001 MIPS).

zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers (zSeries, IBM System z9, and IBM System z10).

Weighted million operations per second (WMOPS) is a similar measurement, used for audio codecs.

Timeline of instructions per second

Note: Bold highlight indicates the next step-up in terms of the highest known MIPS figures of their time.

Processor / System Dhrystone MIPS / MIPS D IPS / clock cycles per second D IPS / clock cycles per second / cores per die Year Source
UNIVAC I0.002 MIPS at 2.25 MHz0.00080.00081951

[3]

Intel 40040.092 MIPS at 740 kHz
(Not Dhrystone)
0.1240.1241971[4]
IBM System/370 1580.64 MIPS at 8.696 MHz0.07360.07361972[5]
Intel 80800.29 MIPS at 2 MHz0.1450.1451974[6]
MOS Technology 65020.43 MIPS at 1 MHz0.430.431975[7]
Intel 8080A0.435 MIPS at 3 MHz0.1450.1451976[6]
Zilog Z800.58 MIPS at 4 MHz0.1450.1451976[7]
Motorola 68090.42 MIPS at 1 MHz0.420.421977[7]
Motorola 68020.5 MIPS at 1 MHz0.50.51977[8]
IBM System/370 158-30.73 MIPS at 8.696 MHz0.08390.08391977[5]
VAX-11/7801 MIPS at 5 MHz0.20.21977[5]
Fujitsu FACOM 230-75 APU2 MIPS at 11 MHz0.1820.1821977[9][10]
Intel 80860.33 MIPS at 5 MHz0.0660.0661978[6]
Fujitsu MB88432 MIPS at 2 MHz
(Not Dhrystone)
111978[11]
Intel 80880.75 MIPS at 10 MHz0.0750.0751979[6]
Motorola 680001.4 MIPS at 8 MHz0.1750.1751979[7]
Zilog Z8001/Z80021.5 MIPS at 6 MHz0.250.251979[12]
Intel 8035/8039/80486 MIPS at 6 MHz
(Not Dhrystone)
111980[13]
Fujitsu MB8843/MB88446 MIPS at 6 MHz
(Not Dhrystone)
111980[11]
Zilog Z80/Z80H1.16 MIPS at 8 MHz0.1450.1451981[7][14]
Motorola 68021.79 MIPS at 3.58 MHz0.50.51981[8][15]
Zilog Z8001/Z8002B2.5 MIPS at 10 MHz0.250.251981[12]
MOS Technology 65022.522 MIPS at 5.865 MHz0.430.431981[7][15]
Sega G80 (3 cores)7.4 MIPS at 8 MHz2.4670.3331981[16]
Intel 2861.28 MIPS at 12 MHz0.1070.1071982[5]
Motorola 680002.188 MIPS at 12.5 MHz0.1750.1751982[7]
Motorola 680102.407 MIPS at 12.5 MHz0.1930.1931982[17]
NEC V204 MIPS at 8 MHz0.50.51982[18]
Namco Pole Position (7 cores)8.141 MIPS at 3.072 MHz1.1630.3791982[19]
LINKS-1 Computer Graphics System (257 cores)642.5 MIPS at 10 MHz2.50.251982[20]
Texas Instruments TMS320105 MIPS at 20 MHz0.250.251983[21]
NEC V305 MIPS at 10 MHz0.50.51983[18]
Motorola 680103.209 MIPS at 16.67 MHz0.1930.1931984[17]
Motorola 680204.848 MIPS at 16 MHz0.3030.3031984[22]
Hitachi HD637052 MIPS at 2 MHz111985[23][24]
Intel i386DX2.15 MIPS at 16 MHz0.1340.1341985[5]
Hitachi-Motorola 68HC0003.5 MIPS at 20 MHz0.1750.1751985[7]
Intel 87518 MIPS at 8 MHz111985[25]
Sega System 16 (4 cores)16.33 MIPS at 10 MHz4.0830.4081985[26]
ARM24 MIPS at 8 MHz0.50.51986
Texas Instruments TMS340106 MIPS at 50 MHz0.120.121986[27]
NEC V706.6 MIPS at 20 MHz0.330.331987[28]
Motorola 680309 MIPS at 25 MHz0.360.361987[29][30]
Gmicro/20010 MIPS at 20 MHz0.50.51987[31]
Texas Instruments TMS320C2012.5 MIPS at 25 MHz0.50.51987[32]
Analog Devices ADSP-210012.5 MIPS at 12.5 MHz111987[33]
Texas Instruments TMS320C2525 MIPS at 50 MHz0.50.51987[32]
Motorola 6802010 MIPS at 33 MHz0.3030.3031988[22]
Motorola 6803018 MIPS at 50 MHz0.360.361988[30]
Namco System 21 (10 cores)73.927 MIPS at 25 MHz2.9570.2961988[34]
Intel i386DX4.3 MIPS at 33 MHz0.130.131989[5]
Intel i486DX8.7 MIPS at 25 MHz0.3480.3481989[5]
NEC V8016.5 MIPS at 33 MHz0.50.51989[28]
Intel i86025 MIPS at 25 MHz111989[35]
Atari Hard Drivin' (7 cores)33.573 MIPS at 50 MHz0.6710.09591989[36]
NEC SX-3 (4 cores)680 MIPS at 400 MHz1.70.4251989[37][38]
Motorola 6804044 MIPS at 40 MHz1.11.11990[39]
Namco System 21 (Galaxian³) (96 cores)1,660.386 MIPS at 40 MHz41.510.4321990[40]
AMD Am3869 MIPS at 40 MHz0.2250.2251991[41]
Intel i486DX11.1 MIPS at 33 MHz0.3360.3361991[5]
Intel i86050 MIPS at 50 MHz111991[35]
Intel i486DX225.6 MIPS at 66 MHz0.3880.3881992[5]
DEC Alpha 21064 EV486 MIPS at 150 MHz0.5730.5731992[5]
DEC Alpha 21064 EV4135 MIPS at 200 MHz0.6750.6751993[5][42]
MIPS R440085 MIPS at 150 MHz0.5670.5671993[43]
Gmicro/500132 MIPS at 66 MHz221993[44]
IBM-Motorola PowerPC 601157.7 MIPS at 80 MHz1.9711.9711993[45]
SGI Onyx RealityEngine2 (36 cores)2,640 MIPS at 150 MHz17.60.4891993[46]
Namco Magic Edge Hornet Simulator (36 cores)2,880 MIPS at 150 MHz19.20.5331993[43]
Fujitsu-NAL Numerical Wind Tunnel (168 cores)10,718.4 MIPS at 105 MHz63.80.6081993[47][48]
ARM740 MIPS at 45 MHz0.8890.8891994[49]
Intel DX470 MIPS at 100 MHz0.70.71994[6]
Motorola 68060110 MIPS at 75 MHz1.331.331994
Intel Pentium188 MIPS at 100 MHz1.881.881994[50]
Microchip PIC16F5 MIPS at 20 MHz0.250.251995[51]
IBM-Motorola PowerPC 603e188 MIPS at 133 MHz1.4141.4141995[52]
ARM 7500FE35.9 MIPS at 40 MHz0.90.91996
IBM-Motorola PowerPC 603ev423 MIPS at 300 MHz1.411.411996[52]
Intel Pentium Pro541 MIPS at 200 MHz2.72.71996[53]
Hitachi SH-4360 MIPS at 200 MHz1.81.81997[54][55]
IBM-Motorola PowerPC 750525 MIPS at 233 MHz2.32.31997
Zilog eZ8080 MIPS at 50 MHz1.61.61999[56]
Intel Pentium III2,054 MIPS at 600 MHz3.43.41999[50]
Sega Naomi Multiboard (32 cores)6,400 MIPS at 200 MHz3211999[57]
Freescale MPC8272760 MIPS at 400 MHz1.91.92000[58]
AMD Athlon3,561 MIPS at 1.2 GHz3.03.02000
Sony-Toshiba Emotion Engine (PS2)6,000 MIPS at 294 MHz20.4082.5512000[59]
Silicon Recognition ZISC 788,600 MIPS at 33 MHz260.6260.62000[60]
NEC SX-6 (Single Node, 8 cores)44,208 MIPS at 500 MHz88.41611.0522001[5]
NEC SX-6 (128 Node, 1024 cores)5,658,624 MIPS at 500 MHz11,317.24811.0522001[5]
ARM11515 MIPS at 412 MHz1.251.252002[61]
NEC Earth Simulator (5120 cores)28,293,540 MIPS at 500 MHz56,587.0811.0522002[62]
AMD Athlon XP 2500+7,527 MIPS at 1.83 GHz4.14.12003[50]
Pentium 4 Extreme Edition9,726 MIPS at 3.2 GHz3.03.02003
Microchip PIC10F1 MIPS at 4 MHz0.250.252004[63][64]
ARM Cortex-M3125 MIPS at 100 MHz1.251.252004[65]
Nios II190 MIPS at 165 MHz1.131.132004[66]
MIPS32 4KEc356 MIPS at 233 MHz1.51.52004[67]
VIA C71,799 MIPS at 1.3 GHz1.41.42005[68]
ARM Cortex-A82,000 MIPS at 1.0 GHz2.02.02005[69]
AMD Athlon FX-5712,000 MIPS at 2.8 GHz4.34.32005
AMD Athlon 64 3800+ X2 (Dual core)14,564 MIPS at 2.0 GHz7.33.62005[70]
ARM Cortex-R4450 MIPS at 270 MHz1.661.662006[71]
MIPS32 24K604 MIPS at 400 MHz1.511.512006[72]
PS3 Cell BE (PPE only)10,240 MIPS at 3.2 GHz3.23.22006
Xbox360 IBM "Xenon" (Triple core)19,200 MIPS at 3.2 GHz6.02.02005
AMD Athlon FX-60 (Dual core)18,938 MIPS at 2.6 GHz7.33.62006[70]
Intel Core 2 Extreme X6800 (Dual core)27,079 MIPS at 2.93 GHz9.24.62006[70]
Intel Core 2 Extreme QX6700 (Quad core)49,161 MIPS at 2.66 GHz18.44.62006[73]
MIPS64 20Kc1,370 MIPS at 600 MHz2.32.32007[74]
P.A. Semi PA6T-1682M8,800 MIPS at 1.8 GHz4.44.42007[75]
Qualcomm Scorpion (Cortex A8-like)2,100 MIPS at 1 GHz2.12.12008[61]
Intel Atom N270 (Single core)3,846 MIPS at 1.6 GHz2.42.42008[76]
Intel Core 2 Extreme QX9770 (Quad core)59,455 MIPS at 3.2 GHz18.64.62008[77]
Intel Core i7 920 (Quad core)82,300 MIPS at 2.93 GHz28.0897.0222008[78]
ARM Cortex-M045 MIPS at 50 MHz0.90.92009[79]
ARM Cortex-A9 (Dual core)7,500 MIPS at 1.5 GHz5.02.52009[80]
AMD Phenom II X4 940 Black Edition42,820 MIPS at 3.0 GHz14.33.52009[81]
Fujitsu SPARC64 VIIIfx113,471.314 MIPS at 2 GHz113,471.3147.0922009[59][82]
AMD Phenom II X6 1100T78,440 MIPS at 3.3 GHz23.73.92010[78]
Intel Core i7 Extreme Edition 980X (Hex core)147,600 MIPS at 3.33 GHz44.77.462010[83]
Tianhe-1A (186,368 cores)2,670,000,000 MIPS at 2.93 GHz14,326.4944.892010[59][84]
ARM Cortex A51,256 MIPS at 800 MHz1.571.572011[69]
ARM Cortex A72,850 MIPS at 1.5 GHz1.91.92011[61]
Qualcomm Krait (Cortex A15-like, Dual core)9,900 MIPS at 1.5 GHz6.63.32011[61]
AMD E-350 (Dual core)10,000 MIPS at 1.6 GHz6.253.1252011[85]
Nvidia Tegra 3 (Quad core Cortex-A9)13,800 MIPS at 1.5 GHz9.22.52011
Samsung Exynos 5250 (Cortex-A15-like Dual core)14,000 MIPS at 2.0 GHz7.03.52011[86]
Intel Core i5-2500K (Quad core)83,000 MIPS at 3.3 GHz25.1526.2882011[87]
Intel Core i7 875K92,100 MIPS at 2.93 GHz31.47.852011[88]
AMD FX-8150 (Eight core)108,890 MIPS at 3.6 GHz30.23.782011[89][90]
Intel Core i7 2600K117,160 MIPS at 3.4 GHz34.458.612011[91]
Intel Core i7 Extreme Edition 3960X (Hex core)176,170 MIPS at 3.3 GHz53.388.892011[92]
Fujitsu K computer (705,024 cores)10,000,000,000 MIPS at 2 GHz113,471.3147.0922011[59][82]
AMD FX-835097,125 MIPS at 4.2 GHz23.12.92012[90][93]
Intel Core i7 3770K106,924 MIPS at 3.9 GHz27.46.92012[90]
Intel Core i7 3630QM113,093 MIPS at 3.2 GHz35.38.832012[94]
Intel Core i7 4770K133,740 MIPS at 3.9 GHz34.298.572013[90][93][95]
Intel Core i7 5960X238,310 MIPS at 3.0 GHz79.49.922014[96]
Raspberry Pi 24,744 MIPS at 1.0 GHz 4.744 1.186 2014[97]
Processor / System Dhrystone MIPS / MIPS D IPS / clock cycles per second D IPS / clock cycles per second / cores per die Year Source

Historic data

See also

References

  1. Gibson, J.C. (1970). The Gibson Mix (Technical Report TR 00.2043). Poughkeepsie, N.Y.: IBM Systems Development Division.
  2. Ted MacNeil. "Don't be Misled by MIPS". IBM magazine.
  3. US Steel News. 15-20. Industrial Relations Department of The United States Steel Corporation of Delaware. 1950–1955. p. 29.
  4. MCS4 > IntelP4004
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 http://www.jcmit.com/cpu-performance.htm
  6. 1 2 3 4 5 http://web.archive.org/web/20120424231244/http://www.depi.itch.edu.mx/apacheco/asm/Intel_cpus.htm
  7. 1 2 3 4 5 6 7 8 http://www.drolez.com/retro/
  8. 1 2 2 cycles per instruction
  9. http://museum.ipsj.or.jp/en/computer/super/0003.html
  10. http://homepage1.nifty.com/KSudou-NET/ks0D0D03.htm
  11. 1 2 1 instruction per cycle
  12. 1 2 4 cycles per instruction = 0.25 instructions per cycle
  13. https://archive.org/stream/bitsavers_inteldataSngleComponent8BitMicrocomputerDataSheet1_846962/8048_8035_HMOS_Single_Component_8-Bit_Microcomputer_DataSheet_1980
  14. http://web.archive.org/web/20120219195401/http://www.cityofberwyn.com/simulation/gameHardware/G80ref1.20.txt
  15. 1 2 http://www.system16.com/hardware.php?id=735
  16. Sega G80: Zilog Z80 @ 8 MHz (1.16 MIPS ), 2× Intel 8035/8039 @ 3.12 MHz (6.24 MIPS )
  17. 1 2 10% faster than 68000 (0.175 MIPS per MHz )
  18. 1 2 NEC V20/V30: 250 nanoseconds per instruction @ 8 MHz
  19. Namco Pole Position: Zilog Z80 @ 3.072 (0.445 MIPS ), 2× Zilog Z8002 @ 3.072 MHz (1.536 MIPS ), 4× Fujitsu MB8843/MB8844 @ 1.54 MHz (6.16 MIPS )
  20. LINKS-1 Computer Graphics System: 257× Zilog Z8001 at 10 MHz (2.5 MIPS ) each
  21. http://www.ti.com/lit/ds/symlink/tms320ss16.pdf
  22. 1 2 MC68020 Product Summary Page
  23. http://digital.hitachihyoron.com/pdf/1985/08/1985_08_05.pdf
  24. http://www.datasheetarchive.com/dlmain/Datasheets-13/DSA-246134.pdf
  25. 1 instruction per cycle
  26. Sega System 16: Hitachi-Motorola 68000 @ 10 MHz (1.75 MIPS), NEC-Zilog Z80 @ 4 MHz (0.58 MIPS) , Intel 8751 @ 8 MHz (8 MIPS ), Intel 8048 @ 6 MHz (6 MIPS )
  27. http://books.google.co.uk/books?id=KzoEAAAAMBAJ&pg=PT22
  28. 1 2 http://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8
  29. http://books.google.co.uk/books?id=KU7dCBpP7fsC&pg=PA130
  30. 1 2 MC68030 Product Summary Page
  31. http://tronweb.super-nova.co.jp/tronvlsicpu.html
  32. 1 2 http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf
  33. http://pdf.datasheetcatalog.com/datasheet/analogdevices/ADSP-2100KG.pdf
  34. Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5 MIPS ), 2× Motorola 68000 @ 12.288 MHz (4.301 MIPS ), Motorola 68020 @ 12.5 MHz (3.788 MIPS ), Hitachi HD63705 @ 2.048 MHz (2.048 MIPS ), Motorola 6809 @ 3.072 MHz (1.29 MIPS )
  35. 1 2 http://alacron.com/index.php?src=gendocs&ref=Inteli860_basedBusBoardsFT_200_VME&category=news
  36. Atari Hard Drivin' hardware: Motorola 68000 @ 7 MHz (1.225 MIPS ), Motorola 68010 @ 7 MHz (1.348 MIPS ), 3× Texas Instruments TMS34010 @ 50 MHz (18 MIPS ), Analog Devices ADSP-2100 @ 8 MHz (8 MIPS ), Texas Instruments TMS32010 @ 20 MHz (5 MIPS )
  37. http://www.degruyter.com/dg/viewarticle/j$002fpiko.1990.13.issue-4$002fpiko.1990.13.4.205$002fpiko.1990.13.4.205.xml;jsessionid=2928071D864D5E4F9045C8A209E7AA94
  38. http://www.top500.org/system/170813
  39. MC68040 Product Summary Page
  40. Namco System 21 (Galaxian³) hardware: 80× Texas Instruments TMS320C25 @ 40 MHz (1600 MIPS ), 5× Motorola 68020 @ 24.576 MHz (37.236 MIPS ) Motorola 68000 @ 12.288 MHz (2.15 MIPS ), 10× Motorola 68000 @ 12 MHz (21 MIPS )
  41. http://books.google.co.uk/books?id=sc0wyeolS8cC&pg=PA97
  42. Digital's 21064 Microprocessor, Digital Equipment Corporation (c1992) accessdate=2009-08-29
  43. 1 2 http://www.system16.com/hardware.php?id=832
  44. http://dl.acm.org/citation.cfm?id=623816
  45. http://www.netlib.org/performance/html/dhrystone.data.col0.html
  46. 24× MIPS R4400 (2040 MIPS), 12× Intel i860 (600 MIPS)
  47. http://museum.ipsj.or.jp/en/computer/super/0020.html
  48. http://www.fujitsu.com/global/Images/fujitsu-contribution-to-hpc.pdf
  49. http://www.segatech.com/technical/saturnspecs/
  50. 1 2 3 Tomshardware Cpu chart 2004
  51. PIC16F84A
  52. 1 2 http://www.fermimn.gov.it/inform/materiali/evarchi/motorola/603e_fs.pdf
  53. SiSoftware Zone
  54. http://www.segatech.com/technical/cpu/
  55. http://www.segatech.com/archives/january1998.html
  56. "Zilog Sees New Lease of Life for Z80 in Internet Appliances". Computergram International. 1999.
  57. Sega Naomi Multiboard hardware: 16× Hitachi SH-4 at 200 MHz (5760 MIPS ), 16× ARM7 at 45 MHz (640 MIPS )
  58. Freescale Semiconductor - MPC8272 PowerQUICC II Processor Family
  59. 1 2 3 4 http://www.frc.ri.cmu.edu/~hpm/book97/ch3/processor.list.txt
  60. http://www.datasheetarchive.com/ZISC78-datasheet.html
  61. 1 2 3 4 Anandtech ARM Cortex A7 architecture comparison
  62. NEC Earth Simulator: 5,120× NEC SX-6 at 500 MHz (28,293,540 MIPS)
  63. PIC10F200
  64. Microchip Technology Debuts Industry’s First 6-Pin Microcontrollers: The World’s Smallest Microcontroller
  65. ARM Cortex-M3
  66. Nios II Performance Benchmarks
  67. mini-itx.com - epia px 10000 review
  68. 1 2 ARM Cortex-A Series Comparison
  69. 1 2 3 CPU Charts 2007 - Tom's Hardware
  70. Cortex-R4 Processor
  71. [http://www.mips.com/products/cores/32-64-bit-cores/mips32-24k/ MIPS32 24K]
  72. Synthetics, Continued - Tom's Hardware : Intel's Core 2 Quadro Kentsfield: Four Cores on a Rampage
  73. Design Reuse - needs free registration
  74. Merritt, Rick (5 February 2007). "Startup takes PowerPC to 25 W". EE Times. UBM Tech. Retrieved 20 November 2012.
  75. OC Workbench
  76. Synthetic - Sandra CPU - Tom's Hardware : Intel Core 2 Extreme QX9770: Paper Tiger?
  77. 1 2 Tom's Hardware Cpu Charts 2010
  78. Cortex-M0 Processor
  79. EEE Journal
  80. XtremeSystems Member Synthetic - Sandra CPU
  81. 1 2 K computer: 88,128× Fujitsu SPARC64 VIIIfx @ 2 GHz each
  82. Overclock3D - Sandra CPU
  83. http://www.top500.org/system/176929
  84. Tom's Hardware
  85. Samsung Exynos 5250 Announcement
  86. http://www.guru3d.com/articles-pages/core-i5-2500k-and-core-i7-2600k-review,13.html
  87. Tom's Hardware - Desktop CPU Charts 2011: Sandra 2010 Pro ALU
  88. HardOCP Bulldozer Desktop Performance - Synthetic Benchmarks
  89. 1 2 3 4 http://www.cpu-world.com/benchmarks/browse/910_80,965_61,993_80,1035_96/?c_test=6&PROCESS=Show+Selected
  90. Tom's Hardware - Benchmark Results: Synthetics
  91. HardOCP - Synthetic Benchmarks
  92. 1 2 http://versus.com/en/amd-fx-8350-black-edition-vs-intel-core-i7-4770k
  93. - Notebookcheck
  94. http://www.notebookcheck.net/Intel-Core-i7-Desktop-4770K-Notebook-Processor.93553.0.html
  95. http://techgage.com/print/core-i7-5960x-extreme-edition-review-intels-overdue-desktop-8-core-is-here/
  96. http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/
This article is issued from Wikipedia - version of the Friday, May 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.