Nickel(II) hydroxide

Nickel(II) hydroxide
Names
IUPAC name
Nickel(II) Hydroxide
Other names
Nickel Hydroxide, Theophrasite
Identifiers
12054-48-7 YesY
36897-37-7 (monohydrate) N
ChemSpider 55452 YesY
EC Number 235-008-5
Jmol 3D model Interactive image
PubChem 61534
RTECS number QR648000
Properties
Ni(OH)2
Molar mass 92.724 g/mol (anhydrous)
110.72 g/mol (monohydrate)
Appearance green crystals
Density 4.10 g/cm3
Melting point 230 °C (446 °F; 503 K) (anhydrous, decomposes)
0.013 g/100 mL
Solubility soluble in dilute acid, ammonia (monohydrate)
Structure
hexagonal
Thermochemistry
79 J·mol−1·K−1[1]
−538 kJ·mol−1[1]
Hazards
Lethal dose or concentration (LD, LC):
1515 mg/kg (oral, rat)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references
The test tube in the middle contains a precipitate of nickel(II) hydroxide

Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is an apple-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable battery.[2]

Properties

Nickel(II) hydroxide has two well-characterized polymorphs, α and β. The α structure consists of Ni(OH)2 layers with intercalated anions or water.[3][4] The β form adopts a hexagonal close-packed structure of Ni2+ and OH ions.[3][4] In the presence of water, the α polymorph typically recrystallizes to the β form.[3][5] In addition to the α and β polymorphs, several γ nickel hydroxides have been described, distinguished by crystal structures with much larger inter-sheet distances.[3]

The mineral form of Ni(OH)2, theophrastite, was first identified in the Vermion region of northern Greece, in 1980. It is found naturally as a translucent emerald-green crystal formed in thin sheets near the boundaries of idocrase or chlorite crystals.[6] A nickel-magnesium variant of the mineral, (Ni,Mg)(OH)2 had been previously discovered at Hagdale on the island of Unst in Scotland.[7]

Reactions

Nickel (II) hydroxideis frequently used in electrical car batteries.[4] Specifically, Ni(OH)2 readily oxidizes to nickel oxyhydroxide, NiOOH, in combination with a reduction reaction, often of a metal hydride (reaction 1 and 2).[8]

Reaction 1 Ni(OH)2 + OH → NiO(OH) + H2O + e

Reaction 2 M + H2O + e → MH + OH

Net Reaction (in H2O) Ni(OH)2 + M → NiOOH + MH

Of the two polymorphs, α-Ni(OH)2 has a higher theoretical capacity and thus is generally considered to be preferable in electrochemical applications. However, it transforms to β-Ni(OH)2 in alkaline solutions, leading to many investigations into the possibility of stabilized α-Ni(OH)2 electrodes for industrial applications.[5]

Synthesis

The synthesis entails treating aqueous solutions of nickel(II) salts with potassium hydroxide.[9]

Toxicity

The Ni2+ ion is a known carcinogen. Toxicity and related safety concerns have driven research into increasing the energy density of Ni(OH)2 electrodes, such as the addition of calcium or cobalt hydroxides.[2]

See also

References

  1. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 0-618-94690-X.
  2. 1 2 Chen, J.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. J. Electrochem. Soc. 1999. 146, 3606-3612.
  3. 1 2 3 4 Oliva, P.; Leonardi, J.; Laurent, J.F. Journal of Power Sources. 1982, volume 8, 229-255.
  4. 1 2 3 Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Am. Chem. Soc. Nano Letters. 2001, 1, 263-266.
  5. 1 2 Shukla, A.K.; Kumar, V.G.; Munichandriah, N. J. Electrochem. Soc.1994, 141, 2956-2959.
  6. Marcopoulos, T.; Economou, M. American Mineralogist, 1980, 66, 1020-1021.
  7. Livingston, A. and Bish, D. L. (March 1982) "On the new mineral theophrastite, a nickel hydroxide, from Unst, Shetland, Scotland". Mineralogical Magazine. 6 No. 338.
  8. Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. Science. 1993, 260, 176-181.
  9. O. Glemser "Nickel(II) Hydroxide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1549.

External links

This article is issued from Wikipedia - version of the Wednesday, April 27, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.