Packaging and labeling

"Packaging" redirects here. For other uses, see Packaging (disambiguation).
UK Risperdal Tablets 2000 in a blister pack, which was itself packaged in a folding carton made of paperboard.
Shrink wrapped frozen pork

Packaging is the technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a coordinated system of preparing goods for transport, warehousing, logistics, sale, and end use. Packaging contains, protects, preserves, transports, informs, and sells.[1] In many countries it is fully integrated into government, business, institutional, industrial, and personal use.

Package labeling (American English) or labelling (British English) is any written, electronic, or graphic communication on the package or on a separate but associated label.

History

Ancient era

Bronze wine container from the 9th century BCE.

The first packages used the natural materials available at the time: baskets of reeds, wineskins (bota bags), wooden boxes, pottery vases, ceramic amphorae, wooden barrels, woven bags, etc. Processed materials were used to form packages as they were developed: for example, early glass and bronze vessels. The study of old packages is an important aspect of archaeology.

The earliest recorded use of paper for packaging dates back to 1035, when a Persian traveler visiting markets in Cairo noted that vegetables, spices and hardware were wrapped in paper for the customers after they were sold.[2]

Modern era

Tinning

The use of tinplate for packaging dates back to the 18th century. The manufacture of tinplate was long a monopoly of Bohemia; in 1667 Andrew Yarranton, an English engineer, and Ambrose Crowley brought the method to England where it was improved by ironmasters including Philip Foley.[3][4] By 1697, John Hanbury[5] had a rolling mill at Pontypool for making "Pontypoole Plates".[6][7] The method pioneered there of rolling iron plates by means of cylinders enabled more uniform black plates to be produced than was possible with the former practice of hammering.

Tinplate boxes first began to be sold from ports in the Bristol Channel in 1725. The tinplate was shipped from Newport, Monmouthshire.[8] By 1805, 80,000 boxes were made and 50,000 exported. Tobacconists in London began packaging snuff in metal-plated canisters from the 1760s onwards.[9]

Canning

1914 magazine advertisement for cookware with instructions for home canning.

With the discovery of the importance of airtight containers for food preservation by French inventor Nicholas Appert, the tin canning process was patented by British merchant Peter Durand in 1810.[10] After receiving the patent, Durand did not himself follow up with canning food. He sold his patent in 1812 to two other Englishmen, Bryan Donkin and John Hall, who refined the process and product and set up the world's first commercial canning factory on Southwark Park Road, London. By 1813, they were producing the first canned goods for the Royal Navy.[11][12]

The progressive improvement in canning stimulated the 1855 invention of the can opener. Robert Yeates, a cutlery and surgical instrument maker of Trafalgar Place West, Hackney Road, Middlesex, UK, devised a claw-ended can opener with a hand-operated tool that haggled its way around the top of metal cans.[13] In 1858, another lever-type opener of a more complex shape was patented in the United States by Ezra Warner of Waterbury, Connecticut.

Paper-based packaging

Packing folding cartons of salt.

Set-up boxes were first used in the 16th century and modern folding cartons date back to 1839. The first corrugated box was produced commercially in 1817 in England. Corrugated (also called pleated) paper received a British patent in 1856 and was used as a liner for tall hats. Scottish-born Robert Gair invented the pre-cut paperboard box in 1890—flat pieces manufactured in bulk that folded into boxes. Gair's invention came about as a result of an accident: as a Brooklyn printer and paper-bag maker during the 1870s, he was once printing an order of seed bags, and the metal ruler, normally used to crease bags, shifted in position and cut them. Gair discovered that by cutting and creasing in one operation he could make prefabricated paperboard boxes.[14]

Commercial paper bags were first manufactured in Bristol, England, in 1844, and the American Francis Wolle patented a machine for automated bag-making in 1852.[15]

20th century

Packaging advancements in the early 20th century included Bakelite closures on bottles, transparent cellophane overwraps and panels on cartons. These innovations increased processing efficiency and improved food safety. As additional materials such as aluminum and several types of plastic were developed, they were incorporated into packages to improve performance and functionality.[16]

Heroin bottle and carton, early 20th century.

In 1952, Michigan State University became the first university in the world to offer a degree in Packaging Engineering.[17]

In-plant recycling has long been common for producing packaging materials. Post-consumer recycling of aluminum and paper-based products has been economical for many years: since the 1980s, post-consumer recycling has increased due to curbside recycling, consumer awareness, and regulatory pressure.

A pill box made from Polyethylene in 1936.

Many prominent innovations in the packaging industry were developed first for military use. Some military supplies are packaged in the same commercial packaging used for general industry. Other military packaging must transport materiel, supplies, foods, etc. under severe distribution and storage conditions. Packaging problems encountered in World War II led to Military Standard or "mil spec" regulations being applied to packaging, which was then designated "military specification packaging". As a prominent concept in the military, mil spec packaging officially came into being around 1941, due to operations in Iceland experiencing critical losses, ultimately attributed to bad packaging. In most cases, mil spec packaging solutions (such as barrier materials, field rations, antistatic bags, and various shipping crates) are similar to commercial grade packaging materials, but subject to more stringent performance and quality requirements.[18]

As of 2003, the packaging sector accounted for about two percent of the gross national product in developed countries. About half of this market was related to food packaging.[19]

The purposes of packaging and package labels

Packaging and package labeling have several objectives[20]

A single-serving shampoo packet

Packaging types

Various types of household packaging for foods

Packaging may be of several different types. For example, a transport package or distribution package can be the shipping container used to ship, store, and handle the product or inner packages. Some identify a consumer package as one which is directed toward a consumer or household.

Packaging may be described in relation to the type of product being packaged: medical device packaging, bulk chemical packaging, over-the-counter drug packaging, retail food packaging, military materiel packaging, pharmaceutical packaging, etc.

Aluminum can with an easy-open lid

It is sometimes convenient to categorize packages by layer or function: "primary", "secondary", etc.

These broad categories can be somewhat arbitrary. For example, depending on the use, a shrink wrap can be primary packaging when applied directly to the product, secondary packaging when used to combine smaller packages, or tertiary packaging when used to facilitate some types of distribution, such as to affix a number of cartons on a pallet.

Symbols used on packages and labels

"Print & Apply" corner wrap UCC (GS1-128) label application to a pallet load
A bar code encoding the word "Wikipedia" in Code 128

Many types of symbols for package labeling are nationally and internationally standardized. For consumer packaging, symbols exist for product certifications (such as the FCC and TÜV marks), trademarks, proof of purchase, etc. Some requirements and symbols exist to communicate aspects of consumer rights and safety, for example the CE marking or the estimated sign that notes conformance to EU weights and measures accuracy regulations. Examples of environmental and recycling symbols include the recycling symbol, the recycling code (which could be a resin identification code), and the "Green Dot". Food packaging may show food contact material symbols. In the European Union, products of animal origin which are intended to be consumed by humans have to carry standard, oval-shaped EC identification and health marks for food safety and quality insurance reasons.

Bar codes, Universal Product Codes, and RFID labels are common to allow automated information management in logistics and retailing. Country of Origin Labeling is often used. Some products might use QR codes or similar matrix barcodes. Packaging may have visible registration marks and other printing calibration/troubleshooting cues.

Shipping container labeling

Technologies related to shipping containers are identification codes, bar codes, and electronic data interchange (EDI). These three core technologies serve to enable the business functions in the process of shipping containers throughout the distribution channel. Each has an essential function: identification codes either relate product information or serve as keys to other data, bar codes allow for the automated input of identification codes and other data, and EDI moves data between trading partners within the distribution channel.

Elements of these core technologies include UPC and EAN item identification codes, the SCC-14 (UPC shipping container code), the SSCC-18 (Serial Shipping Container Codes), Interleaved 2-of-5 and UCC/EAN-128 (newly designated GS1-128) bar code symbologies, and ANSI ASC X12 and UN/EDIFACT EDI standards.

Small parcel carriers often have their own formats. For example, United Parcel Service has a MaxiCode 2-D code for parcel tracking.

RFID labels for shipping containers are also increasingly used. A Wal-Mart division, Sam's Club, has also moved in this direction and is putting pressure on its suppliers to comply.[26]

Shipments of hazardous materials or dangerous goods have special information and symbols (labels, placards, etc.) as required by UN, country, and specific carrier requirements. On transport packages, standardized symbols are also used to communicate handling needs. Some are defined in the ASTM D5445 "Standard Practice for Pictorial Markings for Handling of Goods" and ISO 780 "Pictorial marking for handling of goods".

Package development considerations

Package design and development are often thought of as an integral part of the new product development process. Alternatively, development of a package (or component) can be a separate process, but must be linked closely with the product to be packaged. Package design starts with the identification of all the requirements: structural design, marketing, shelf life, quality assurance, logistics, legal, regulatory, graphic design, end-use, environmental, etc. The design criteria, performance (specified by package testing), completion time targets, resources, and cost constraints need to be established and agreed upon. Package design processes often employ rapid prototyping, computer-aided design, computer-aided manufacturing and document automation.

Transport packaging needs to be matched to its logistics system. Packages designed for controlled shipments of uniform pallet loads may not be suited to mixed shipments with express carriers.

An example of how package design is affected by other factors is its relationship to logistics. When the distribution system includes individual shipments by a small parcel carrier, the sorting, handling, and mixed stacking make severe demands on the strength and protective ability of the transport package. If the logistics system consists of uniform palletized unit loads, the structural design of the package can be designed to meet those specific needs, such as vertical stacking for a longer time frame. A package designed for one mode of shipment may not be suited to another.

With some types of products, the design process involves detailed regulatory requirements for the packaging. For example, any package components that may contact foods are designated food contact materials.[27] Toxicologists and food scientists need to verify that such packaging materials are allowed by applicable regulations. Packaging engineers need to verify that the completed package will keep the product safe for its intended shelf life with normal usage. Packaging processes, labeling, distribution, and sale need to be validated to assure that they comply with regulations that have the well being of the consumer in mind.

Sometimes the objectives of package development seem contradictory. For example, regulations for an over-the-counter drug might require the package to be tamper-evident and child resistant:[28] These intentionally make the package difficult to open.[29] The intended consumer, however, might be handicapped or elderly and unable to readily open the package. Meeting all goals is a challenge.

Package design may take place within a company or with various degrees of external packaging engineering: independent contractors, consultants, vendor evaluations, independent laboratories, contract packagers, total outsourcing, etc. Some sort of formal project planning and project management methodology is required for all but the simplest package design and development programs. An effective quality management system and Verification and Validation protocols are mandatory for some types of packaging and recommended for all.

Environmental considerations

Main article: sustainable packaging

Package development involves considerations of sustainability, environmental responsibility, and applicable environmental and recycling regulations. It may involve a life cycle assessment[30][31] which considers the material and energy inputs and outputs to the package, the packaged product (contents), the packaging process, the logistics system,[32] waste management, etc. It is necessary to know the relevant regulatory requirements for point of manufacture, sale, and use.

The traditional “three R’s” of reduce, reuse, and recycle are part of a waste hierarchy which may be considered in product and package development.

Development of sustainable packaging is an area of considerable interest to standards organizations, governments, consumers, packagers, and retailers.

Packaging machines

Choosing packaging machinery includes an assessment of technical capabilities, labor requirements, worker safety, maintainability, serviceability, reliability, ability to integrate into the packaging line, capital cost, floorspace, flexibility (change-over, materials, etc.), energy requirements, quality of outgoing packages, qualifications (for food, pharmaceuticals, etc.), throughput, efficiency, productivity, ergonomics, return on investment, etc.

Packaging machinery can be:

  1. purchased as standard, off-the-shelf equipment
  2. purchased custom-made or custom-tailored to specific operations
  3. manufactured or modified by in-house engineers and maintenance staff

Efforts at packaging line automation increasingly use programmable logic controllers and robotics.

Packaging machines may be of the following general types:

  1. ^ Wood, Marcia (April 2002). "Leftover Straw Gets New Life". Agricultural Research. 

See also

References

  1. Soroka (2002) Fundamentals of Packaging Technology, Institute of Packaging Professionals ISBN 1-930268-25-4
  2. Diana Twede (2005). "The Origins of Paper Based Packaging" (PDF). Conference on Historical Analysis & Research in Marketing Proceedings 12: 288–300 [289]. Retrieved March 20, 2010.
  3. Brown, P.J. (1988), "Andrew Yarranton and the British tinplate industry", Historical Metallurgy 22 (1), pp. 42–48
  4. King, P.W. (1988), "Wolverley Lower Mill and the beginnings of the tinplate industry", Historical Metallurgy 22 (2), pp. 104–113
  5. King 1988, p. 109
  6. H.R. Schubert, History of the British iron and steel industry ... to 1775, 429.
  7. Minchinton, W.W. (1957), The British tinplate industry: a history, Clarendon Press, Oxford, p. 10
  8. Data extracted from D.P. Hussey et al., Gloucester Port Books Database (CD-ROM, University of Wolverhampton 1995).
  9. "Metal Packaging". Retrieved December 17, 2012.
  10. Geoghegan, Tom (April 21, 2013). "BBC News - The story of how the tin can nearly wasn't". Bbc.co.uk. Retrieved June 4, 2013.
  11. William H. Chaloner (1963). People and Industries. Routledge. p. 107. ISBN 0-7146-1284-7.
  12. "Main events in can making". Retrieved August 8, 2009.
  13. Encyclopedia of Kitchen History. Taylor & Francis Group. September 27, 2004. ISBN 978-1-57958-380-4.
  14. Diana Twede and Susan E.M. Selke (2005). Cartons, crates and corrugated board: handbook of paper and wood packaging technology. DEStech Publications. pp. 41–42, 55–56. ISBN 978-1-932078-42-8.
  15. "Paper Packaging". Retrieved December 17, 2012.
  16. Brody, A. L; Marsh, K. S (1997). Encyclopedia of Packaging Technology. ISBN 0-471-06397-5.
  17. "Michigan State School of Packaging". Michigan State University. Retrieved February 11, 2012.
  18. Maloney, J.C. (July 2003). "The History and Significance of Military Packaging" (PDF). Defence Packaging Policy Group. Defence Logistics Agency. Retrieved June 7, 2011.
  19. Y. Schneider; C. Kluge; U. Weiß; H. Rohm (2010). "Packaging Materials and Equipment". In Barry A. Law, A.Y. Tamime. Technology of Cheesemaking: Second Edition. Wiley-Blackwell. p. 413. ISBN 978-1-4051-8298-0.
  20. Bix, L; Rifon, Lockhart, de la Fuente (2003). The Packaging Matrix: Linking Package Design Criteria to the Marketing Mix (PDF). IDS Packaging. Retrieved December 11, 2008. Cite uses deprecated parameter |coauthors= (help)
  21. Choi, Seung-Jin; Burgess (2007). "Practical mathematical model to predict the performance of insulating packages". Packaging Technology and Science 20 (6): 369–380. doi:10.1002/pts.762.
  22. Lee, Ki-Eun; Kim, An, Lyu, Lee (1998). "Effectiveness of modified atmosphere packaging in preserving a prepared ready-to-eat food". Packaging Technology and Science 21 (7): 417. doi:10.1002/pts.821. Cite uses deprecated parameter |coauthors= (help)
  23. Severin, J (2007). "New Methodology for Whole-Package Microbial Challenge Testing for Medical Device Trays". J. Testing and Evaluation 35. doi:10.1520/JTE100869.
  24. Johnston, R.G. (1997). "Effective Vulnerability Assessment of Tamper-Indicating Seals" (PDF). J. Testing and Evaluation 25 (4). doi:10.1520/JTE11883J.
  25. How Anti-shoplifting Devices Work”, HowStuffWorks.com
  26. Bacheldor, Beth (January 11, 2008). "Sam's Club Tells Suppliers to Tag or Pay". Retrieved January 17, 2008.
  27. Sotomayor, R.E.; Arvidson, Kirk, Mayer, McDougal, Sheu (2007). "Regulatory Report, Assessing the Safety of Food Contact Substances". Food Safety.
  28. Rodgers, G.B. (1996). "The safety effects of child-resistant packaging for oral prescription drugs. Two decades of experience". JAMA 275 (21): 1661–65. doi:10.1001/jama.275.21.1661. PMID 8637140.
  29. Yoxall, A.; Janson, R.; Bradbury, S.R.; Langley, J.; Wearn, J.; Hayes, S. (2006). "Openability: producing design limits for consumer packaging". Packaging Technology and Science 16 (4): 183–243. doi:10.1002/pts.725.
  30. Zabaniotou, A; Kassidi (2003). "Life cycle assessment applied to egg packaging made from polystyrene and recycled paper". Journal of Cleaner Production 11 (5): 549–559. doi:10.1016/S0959-6526(02)00076-8.
  31. Franklin (April 2004). "Life Cycle Inventory of Packaging Options for Shipment of Retail Mail-Order Soft Goods" (PDF). Retrieved December 13, 2008.
  32. "SmartWay Transport Partnerships" (PDF). US Environmental Protection Agency. Retrieved December 22, 2008.
  33. "Vista Packaging".
  34. DeRusha, Jason (July 16, 2007). "The Incredible Shrinking Package". WCCO. Archived from the original on July 17, 2007. Retrieved July 16, 2007.
  35. Use Reusables: Fundamentals of Reusable Transport Packaging (PDF), US Environmental Protection Agency, 2012, retrieved June 30, 2014
  36. "HP DeskJet 1200C Printer Architecture". (PDF) . Retrieved on June 27, 2012.
  37. "Footprints In The Sand". Newsroom-magazine.com. Retrieved on June 27, 2012.
  38. "Toxics in Packaging". Retrieved July 31, 2007.

Books, general references

Further reading

This article is issued from Wikipedia - version of the Monday, April 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.