Physical vapor deposition

Inside the Plasma Spray-Physical Vapor Deposition, or PS-PVD, ceramic powder is introduced into the plasma flame, which vaporizes it and then condenses it on the (cooler) workpiece to form the ceramic coating.
PVD: Process flow diagram

Physical vapor deposition (PVD) describes a variety of vacuum deposition methods which can be used to produce thin films. PVD uses physical process (such as heating or sputtering) to produce a vapor of material, which is then deposited on the object which requires coating. PVD is used in the manufacture of items which require thin films for mechanical, optical, chemical or electronic functions. Examples include semiconductor devices such as thin film solar panels,[1] aluminized PET film for food packaging and balloons,[2] and coated cutting tools for metalworking.[3] Besides PVD tools for fabrication, special smaller tools (mainly for scientific purposes) have been developed.[4]

Common industrial coatings applied by PVD are titanium nitride, zirconium nitride, chromium nitride, titanium aluminum nitride.[5]

The source material is unavoidably also deposited on most other surfaces interior to the vacuum chamber, including the fixturing used to hold the parts.

Examples

Various thin film characterisation techniques can be used to measure the physical properties of PVD coatings, such as:

Comparison to other deposition techniques

Advantages

Disadvantages

Application

As mentioned previously, PVD coatings are generally used to improve hardness, wear resistance and oxidation resistance. Thus, such coatings are used in a wide range of applications such as:

See also

Notes

  1. Selvakumar, N.; Barshilia, Harish C. (2012-03-01). "Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications". Solar Energy Materials and Solar Cells 98: 1–23. doi:10.1016/j.solmat.2011.10.028.
  2. Hanlon, J. (1992). 1st ed. Handbook of Package Engineering, Lancaster, PA, Technomic Publishing: ISBN 0-87762-924-2. Chapter 4 Coatings and Laminations
  3. "Product Development | Coating Services Group". coatingservicesgroup.com. Retrieved 2015-10-09.
  4. Fortunato, E.; Barquinha, P.; Martins, R. (2012-06-12). "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances". Advanced Materials 24 (22): 2945–2986. doi:10.1002/adma.201103228. ISSN 1521-4095.
  5. http://www.coatingservicesgroup.com
  6. He, Zhenping; Kretzschmar, Ilona (6 December 2013). "Template-Assisted GLAD: Approach to Single and Multipatch Patchy Particles with Controlled Patch Shape". Langmuir 29 (51): 15755–15761. doi:10.1021/la404592z.
  7. He, Zhenping; Kretzschmar, Ilona (18 June 2012). "Template-Assisted Fabrication of Patchy Particles with Uniform Patches". Langmuir 28 (26): 9915–9919. doi:10.1021/la3017563.
  8. Dunaev A.A., Egorova I.L. (2015). "Properties and optical application of polycrystalline zinc selenide obtained by physical vapor deposition.". Scientific and Technical Journal of Information Technologies, Mechanics and Optics 15 (3): 449–456. line feed character in |journal= at position 33 (help)
  9. http://www.ionfusion.com/technology

References

  • Arvind Andre (editor). Handbook of Plasma Immersion Ion Implantation and Deposition. New York: Wiley-Interscience, 2000. ISBN 0-471-24698-0.
  • Bach, Hans, and Dieter Krause (editors). Thin Films on Glass. Schott series on glass and glass ceramics. London: Springer-Verlag, 2003. ISBN 3-540-58597-4.
  • Bunshah, Roitan F. (editor). Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, second edition. Materials science and process technology series. Park Ridge, N.J.: Noyes Publications, 1994. ISBN 0-8155-1337-2.
  • Gläser, Hans Joachim. Large Area Glass Coating. Dresden: Von Ardenne Anlagentechnik, 2000. ISBN 3-00-004953-3.
  • Glocker, David A., and S. Ismat Shah (editors). Handbook of Thin Film Process Technology (2 vol. set). Bristol, U.K.: Institute of Physics Pub, 2002. ISBN 0-7503-0833-8.
  • Mahan, John E. Physical Vapor Deposition of Thin Films. New York: John Wiley & Sons, 2000. ISBN 0-471-33001-9.
  • Mattox, Donald M. Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control.. Westwood, N.J.: Noyes Publications, 1998. ISBN 0-8155-1422-0.
  • Mattox, Donald M. The Foundations of Vacuum Coating Technology. Norwich, N.Y.: Noyes Publications/William Andrew Pub., 2003. ISBN 0-8155-1495-6.
  • Mattox, Donald M. and Vivivenne Harwood Mattox (editors). 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters. Albuquerque, N.M.: Society of Vacuum Coaters, 2007. ISBN 978-1-878068-27-9.
  • Ohring, Milton Material Science of Thin Films: Deposition and Structure. 2nd edition, Academic Press, 2002. ISBN 0-12-524975-6.
  • Powell, Carroll F., Joseph H. Oxley, and John Milton Blocher (editors). Vapor Deposition. The Electrochemical Society series. New York: Wiley, 1966.
  • Westwood, William D. Sputter Deposition. AVS Education Committee book series, v. 2. New York: Education Committee, AVS, 2003. ISBN 0-7354-0105-5.
  • Willey, Ronald R. Practical Monitoring and Control of Optical Thin Films. Charlevoix, MI: Willey Optical, Consultants, 2007. ISBN 978-0-615-13760-5.
  • Willey, Ronald R. Practical Equipment, Materials, and Processes for Optical Thin Films. Charlevoix, MI: Willey Optical, Consultants, 2007. ISBN 978-0-615-14397-2.
  • Snyder, Tim. "NASA’s PVD Chrome Coating Can Enhance Your Driving Experience." 4wheelonline.com. 4wheelonline, 6 May 2013. Web. <http://4wheelonline.com/nasa-pvd-chrome-coating.226590.0>.

External links

This article is issued from Wikipedia - version of the Thursday, April 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.