Potassium azide

Potassium azide
Names
IUPAC name
Potassium azide
Identifiers
20762-60-1 YesY
Jmol interactive 3D Image
PubChem 10290740
Properties
KN
3
Molar mass 81.1184 g/mol
Appearance Colorless crystals[1]
Density 2.038 g/cm3
[1]
Melting point 350 °C (662 °F; 623 K) (in vacuum)[1]
Boiling point decomposes
41.4 g/100 mL (0 °C)
50.8 g/100 mL (20 °C)
105.7 g/100 mL (100 °C)
Solubility soluble in ethanol
insoluble in ether
Thermochemistry
-1.7 kJ/mol
Hazards
Main hazards Very Toxic, explosive if strongly heated
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g., fluorine Special hazards (white): no codeNFPA 704 four-colored diamond
3
4
3
Lethal dose or concentration (LD, LC):
27 mg/kg (oral, rat)[2]
Related compounds
Other cations
Sodium azide, copper(II) azide, lead(II) azide, silver azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Potassium azide is the inorganic compound having the formula KN
3
. It is a white, water-soluble salt. It is used as a reagent in the laboratory.

It has been found to act as a nitrification inhibitor in soil.[3]

Structure

KN3, RbN3, CsN3, and TlN3 adopt the same structures. They crystallize in a tetragonal habit.[4] The azide is bound to eight cations in an eclipsed orientation. The cations are bound to eight terminal N centers.[5]

Coordination sphere of azide in K,Rb,Cs,TlN3.

Synthesis and reactions

KN3 is prepared by treating potassium carbonate with hydrazoic acid, which is generated in situ.[6] In contrast, the analogous sodium azide is prepared (industrially) by the "Wislicenus process," which proceeds via the reaction sodium amide with nitrous oxide.[7]

Upon heating or upon irradiation with ultraviolet light, it decomposes into potassium metal and nitrogen gas.[8] The decomposition temperatures of the alkali metal azides are: NaN3 (275 °C), KN3 (355 °C), RbN3 (395 °C), CsN3 (390 °C).[9]

Health hazards

Like sodium azide, potassium azide is very toxic. The MAK value for the related sodium azide is 0.07 ppm. The toxicity of azides arise from their ability to inhibit cytochrome c oxidase.[7]

References

  1. 1 2 3 Dale L. Perry; Sidney L. Phillips (1995). Handbook of inorganic compounds. CRC Press. p. 301. ISBN 0-8493-8671-3.
  2. http://chem.sis.nlm.nih.gov/chemidplus/rn/20762-60-1
  3. T. D. Hughes; L. F. Welch (1970). "Potassium Azide as a Nitrification Inhibitor". Agronomy Journal (American Society of Agronomy) 62: 595–599. doi:10.2134/agronj1970.00021962006200050013x.
  4. Khilji, M. Y.; Sherman, W. F.; Wilkinson, G. R. (1982). "Variable temperature and pressure Raman spectra of potassium azide KN
    3
    ". Journal of Raman Spectroscopy 12 (3): 300–303. Bibcode:1982JRSp...12..300K. doi:10.1002/jrs.1250120319.
  5. Ulrich Müller "Verfeinerung der Kristallstrukturen von KN3, RbN3, CsN3 und TIN3" Zeitschrift für anorganische und allgemeine Chemie 1972, Volume 392, 159–166. doi:10.1002/zaac.19723920207
  6. P. W. Schenk "Alkali Azides from Carbonates" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 475.
  7. 1 2 Horst H. Jobelius, Hans-Dieter Scharff "Hydrazoic Acid and Azides" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_193
  8. Tompkins, F. C.; Young, D. A. (1982). "The Photochemical and Thermal Formation of Colour Centres in Potassium Azide Crystals". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 236 (1204): 10–23.
  9. E. Dönges "Alkali Metals" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 475.
This article is issued from Wikipedia - version of the Tuesday, December 29, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.