q-Krawtchouk polynomials
See also: affine q-Krawtchouk polynomials, dual q-Krawtchouk polynomials and quantum q-Krawtchouk polynomials
In mathematics, the q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Stanton (1981) showed that the q-Krawtchouk polynomials are spherical functions for 3 different Chevalley groups over finite fields, and Koornwinder (1989) showed that they are related to representations of the quantum group SU(2).
Definition
The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
References
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18
|contribution-url=
missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248 - Stanton, Dennis (1981), "Three addition theorems for some q-Krawtchouk polynomials", Geometriae Dedicata 10 (1): 403–425, doi:10.1007/BF01447435, ISSN 0046-5755, MR 608153
This article is issued from Wikipedia - version of the Monday, September 05, 2011. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.