q-difference polynomial

In combinatorial mathematics, the q-difference polynomials or q-harmonic polynomials are a polynomial sequence defined in terms of the q-derivative. They are a generalized type of Brenke polynomial, and generalize the Appell polynomials. See also Sheffer sequence.

Definition

The q-difference polynomials satisfy the relation

\left(\frac {d}{dz}\right)_q p_n(z) = 
\frac{p_n(qz)-p_n(z)} {qz-z} = \frac{q^n-1} {q-1} p_{n-1}(z)=[n]_qp_{n-1}(z)

where the derivative symbol on the left is the q-derivative. In the limit of q\to 1, this becomes the definition of the Appell polynomials:

\frac{d}{dz}p_n(z) = np_{n-1}(z).

Generating function

The generalized generating function for these polynomials is of the type of generating function for Brenke polynomials, namely

A(w)e_q(zw) = \sum_{n=0}^\infty \frac{p_n(z)}{[n]_q!} w^n

where e_q(t) is the q-exponential:

e_q(t)=\sum_{n=0}^\infty \frac{t^n}{[n]_q!}=
\sum_{n=0}^\infty \frac{t^n (1-q)^n}{(q;q)_n}.

Here, [n]_q! is the q-factorial and

(q;q)_n=(1-q^n)(1-q^{n-1})\cdots (1-q)

is the q-Pochhammer symbol. The function A(w) is arbitrary but assumed to have an expansion

A(w)=\sum_{n=0}^\infty a_n w^n \mbox{ with } a_0 \ne 0.

Any such A(w) gives a sequence of q-difference polynomials.

References

This article is issued from Wikipedia - version of the Monday, August 11, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.