Relative effectiveness factor

The relative effectiveness factor, or R.E. factor, relates an explosive's demolition power to that of TNT, in units of the TNT equivalent/kg (TNTe/kg). The R.E. factor is the relative mass of TNT to which an explosive is equivalent; the greater the R.E., the more powerful the explosive.

This enables engineers to determine the proper masses of different explosives when applying blasting formulas developed specifically for TNT. For example, if a timber-cutting formula calls for a charge of 1 kg of TNT, then based on octanitrocubane's R.E. factor of 2.38, it would take only 1.0/2.38 (or 0.42) kg of it to do the same job. Using PETN, engineers would need 1.0/1.66 (or 0.60) kg to obtain the same effects as 1 kg of TNT. With ANFO or ammonium nitrate, they would require 1.0/0.74 (or 1.35) kg or 1.0/0.42 (or 2.38) kg, respectively.

R.E. factor examples

The greater the R.E. number, the more powerful the explosive.

Some R.E. factor examples
Explosive, Grade Density
(g/ml)
Detonation
Vel. (m/s)
R.E.
Ammonium nitrate (AN + <0.5% H2O) 1.12 2550 0.42[1]
Black powder (75% KNO3 + 19% C + 6% S) 1.65 600 0.55
Tanerit Simply® (93% granulated AN + 6% red P + 1% C) 0.90 2750 0.55
Hexamine dinitrate (HDN) 1.30 5070 0.60
Dinitrobenzene (DNB) 1.50 6025 0.60
HMTD (hexamine peroxide) 0.88 4520 0.74
ANFO (94% AN + 6% fuel oil) 0.92 5270 0.74
TATP (acetone peroxide) 1.18 5300 0.80
Tovex® Extra (AN water gel) commercial product 1.33 5690 0.80
Hydromite® 600 (AN water emulsion) commercial product 1.24 5550 0.80
ANNMAL (66% AN + 25% NM + 5% Al + 3% C + 1% TETA) 1.16 5360 0.87
Amatol (50% TNT + 50% AN) 1.50 6290 0.91
Nitroguanidine 1.32 6750 0.95
Trinitrotoluene (TNT) 1.60 6900 1.00
Hexanitrostilbene (HNS) 1.70 7080 1.05
Nitrourea 1.45 6860 1.05
Tritonal (80% TNT + 20% aluminium)* 1.70 6650 1.05
Amatol (80% TNT + 20% AN) 1.55 6570 1.10
Nitrocellulose (13.5% N, NC) 1.40 6400 1.10
Nitromethane (NM) 1.13 6360 1.10
PBXW-126 (22% NTO, 20% RDX, 20% AP, 26% Al, 12% PU’s system)* 1.80 6450 1.10
Diethylene glycol dinitrate (DEGDN) 1.38 6610 1.17
PBXIH-135 EB (42% HMX, 33% Al, 25% PCP-TMETN’s system)* 1.81 7060 1.17
PBXN-109 (64% RDX, 20% Al, 16% HTPB’s system)* 1.68 7450 1.17
Triaminotrinitrobenzene (TATB) 1.80 7550 1.17
Picric acid (TNP) 1.71 7350 1.20
Trinitrobenzene (TNB) 1.60 7300 1.20
Tetrytol (70% tetryl + 30% TNT) 1.60 7370 1.20
Nobel's Dynamite (75% NG + 23% diatomite) 1.48 7200 1.25
Tetryl 1.71 7770 1.25
Torpex (aka HBX, 41% RDX + 40% TNT + 18% Al + 1% wax)* 1.80 7440 1.30
Composition B (63% RDX + 36% TNT + 1% wax) 1.72 7840 1.33
Composition C-3 (78% RDX) 1.60 7630 1.33
Composition C-4 (91% RDX) 1.59 8040 1.34
Pentolite (56% PETN + 44% TNT) 1.66 7520 1.33
Semtex 1A (76% PETN + 6% RDX) 1.55 7670 1.35
RISAL P (50% IPN + 28% RDX + 15% Al + 4% Mg + 1% Zr + 2% NC)* 1.39 5980 1.40
Hydrazine mononitrate 1.59 8500 1.42
Mixture: 24% nitrobenzene + 76% TNM 1.48 8060 1.50
Mixture: 30% nitrobenzene + 70% nitrogen tetroxide 1.39 8290 1.50
Nitroglycerin (NG) 1.59 8100 1.54
Octol (80% HMX + 19% TNT + 1% DNT) 1.83 8690 1.54
NTO (Nitrotriazolon) 1.87 8120 1.60
DADNE (1,1-diamino-2,2-dinitroethene, FOX-7) 1.77 8330 1.60
Gelignite (92% NG + 7% nitrocellulose) 1.60 7970 1.60
Plastics Gel® (in toothpaste tube: 45% PETN + 45% NG + 5% DEGDN + 4% NC) 1.51 7940 1.60
Composition A-5 (98% RDX + 2% stearic acid) 1.65 8470 1.60
Erythritol tetranitrate (ETN) 1.60 8100 1.60
Chopin's Composition (10% PETN + 15% RDX + 72% ETN) 1.67 8220 1.60
Hexogen (RDX) 1.78 8700 1.60
PBXW-11 (96% HMX, 1% HyTemp, 3% DOA) 1.81 8720 1.60
Penthrite (PETN) 1.71 8400 1.66
Ethylene glycol dinitrate (EGDN) 1.49 8300 1.66
TNAZ (trinitroazetidine) 1.85 8640 1.70
Octogen (HMX grade B) 1.86 9100 1.70
HNIW (CL-20) 1.97 9380 1.80
Hexanitrobenzene (HNB) 1.97 9400 1.85
MEDINA (Methylene dinitroamine) 1.65 8700 1.93
DDF (4,4’-Dinitro-3,3’-diazenofuroxan) 1.98 10,000 1.95
Heptanitrocubane (HNC) 1.92 9200 N/A
Octanitrocubane (ONC) 1.95 10,600 2.38

*: TBX (thermobaric explosives) or EBX (enhanced blast explosives), in a small, confined space, may have over twice the power of destruction. The Total Power of aluminized mixtures strictly depends on the condition of explosions.

Nuclear

Nuclear weapons and the most powerful non-nuclear weapon examples
Weapon Total yield
(kilotons of TNT)
Weight
(kg)
R.E. ~
Davy Crockett (nuclear device) 0.022 23 1,000
Fat Man (dropped on Nagasaki A-bomb) 20 4600 4,500
Classic (one-stage) fission A-bomb 22 420 50,000
Russian suitcase nuke (in service of GRU) 2.5 31 80,000
Typical (two-stage) nuclear bomb 500-1000 650–1120 900,000
W56 thermonuclear warhead 1,200 272-308 4,960,000
W88 modern thermonuclear warhead (MIRV) 470 355 1,300,000
B53 nuclear bomb (two-stage) 9,000 4050 2,200,000
B41 nuclear bomb (three-stage) 25,000 4850 5,100,000
Tsar nuclear bomb (three-stage) 50,000-56,000 26,500 2,100,000
GBU-57 bomb (Massive Ordnance Penetrator, MOP) 0.0035 13,600 0.26
Grand Slam (Earthquake bomb, M110) 0.0065 9,900 0.66
Bomb used in Oklahoma City (ANFO base on racing fuel) 0.0018 2,300 0.78
BLU-82 (Daisy Cutter) 0.0075 6,800 1.10
MOAB (non-nuclear bomb, GBU-47) 0.011 9,800 1.13
FOAB (advanced thermobaric bomb, ATBIP) 0.044 9,100 4.83

See also

References

  1. US Army Field Manual 5-250: Explosives and Demolition, pages 1–2.
This article is issued from Wikipedia - version of the Saturday, March 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.