Tridecagon
Regular tridecagon | |
---|---|
A regular tridecagon | |
Type | Regular polygon |
Edges and vertices | 13 |
Schläfli symbol | {13} |
Coxeter diagram | |
Symmetry group | Dihedral (D13), order 2×13 |
Internal angle (degrees) | ≈152.308° |
Dual polygon | self |
Properties | convex, cyclic, equilateral, isogonal, isotoxal |
In geometry, a tridecagon (or triskaidecagon) is a thirteen-sided polygon or 13-gon.
Regular tridecagon
A regular tridecagon is represented by Schläfli symbol {13}.
The measure of each internal angle of a regular tridecagon is approximately 152.308 degrees, and the area with side length a is given by
Construction
As 13 is a Pierpont prime but not a Fermat prime, the regular tridecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisector.
The following is an animation from a neusis construction of a regular tridecagon with radius of circumcircle according to Andrew M. Gleason,[1] based on the angle trisection by means of the Tomahawk (light blue).
An approximate construction of a regular tridecagon using straightedge and compass is shown here.
Another possible animation of an approximate construction, also possible with using straightedge and compass.
GeoGebra: E3ME2 = 27.6923076923077°
GeoGebra: 360° ÷ 13 = 27.6923076923077°
Absolute angular error of the constructed central angle:
That can not be shown in GeoGebra, because the result of the constructed central angle and the result of the calculated central angle of tridecagon is in all thirdteen decimal places by GeoGebra shown equal!
Example to illustrate the error:
At a circumscribed circle radius R = 1 billion km (the light would need for this route about 55 minutes), the 1st side would be still without error [mm].
For details, see: Wikibooks: Hendecagon, construction description (German)
Symmetry
The regular tridecagon has Dih13 symmetry, order 26. Since 13 is a prime number there is one subgroup with dihedral symmetry: Dih1, and 2 cyclic group symmetries: Z13, and Z1.
These 4 symmetries can be seen in 4 distinct symmetries on the tridecagon. John Conway labels these by a letter and group order.[2] Full symmetry of the regular form is r26 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.
Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g13 subgroup has no degrees of freedom but can seen as directed edges.
Numismatic use
The regular tridecagon is used as the shape of the Czech 20 korun coin.[3]
Related polygons
A tridecagram is a 13-sided star polygon. There are 5 regular forms given by Schläfli symbols: {13/2}, {13/3}, {13/4}, {13/5}, and {13/6}.
Picture | {13/2} |
{13/3} |
{13/4} |
{13/5} |
{13/6} |
---|---|---|---|---|---|
Internal angle | ≈124.615° | ≈96.9231° | ≈69.2308° | ≈41.5385° | ≈13.8462° |
Petrie polygons
The regular tridecagon is the Petrie polygon 12-simplex:
A12 |
---|
12-simplex |
References
- ↑ Gleason, Andrew Mattei (March 1988). "Angle trisection, the heptagon, and the triskaidecagon p. 192–194 (p. 193 Fig.4)" (PDF). The American Mathematical Monthly 95 (3): 186–194. Archived from the original (PDF) on 2016-01-31. Retrieved 24 December 2015.
- ↑ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
- ↑ Colin R. Bruce, II, George Cuhaj, and Thomas Michael, 2007 Standard Catalog of World Coins, Krause Publications, 2006, ISBN 0896894290, p. 81.
External links
|