Rhombitetrahexagonal tiling
Rhombitetrahexagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.6.4 |
Schläfli symbol | rr{6,4} |
Wythoff symbol | 4 | 6 2 |
Coxeter diagram | |
Symmetry group | [6,4], (*642) |
Dual | Deltoidal tetrahexagonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{6,4}. It can be seen as constructed as a rectified tetrahexagonal tiling, r{6,4}, as well as an expanded order-4 hexagonal tiling or expanded order-6 square tiling.
Constructions
There are two uniform constructions of this tiling, one from [6,4] or (*642) symmetry, and secondly removing the miror middle, [6,1+,4], gives a rectangular fundamental domain [∞,3,∞], (*3222).
Name | Rhombitetrahexagonal tiling | |
---|---|---|
Image | ||
Symmetry | [6,4] (*642) |
[6,1+,4] = [∞,3,∞] (*3222) = |
Schläfli symbol | rr{6,4} | t0,1,2,3{∞,3,∞} |
Coxeter diagram | = |
There are 3 lower symmetry forms seen by including edge-colorings: sees the hexagons as truncated triangles, with two color edges, with [6,4+] (4*3) symmetry. sees the yellow squares as rectangles, with two color edges, with [6+,4] (6*2) symmetry. A final quarter symmetry combines these colorings, with [6+,4+] (32×) symmetry, with 2 and 3 fold gyration points and glide reflections.
Lower symmetry constructions
|
This four color tiling is related to a semiregular infinite skew polyhedron with the same vertex figure in Euclidean 3-space with a prismatic honeycomb construction of .
Symmetry
The dual tiling, called a deltoidal tetrahexagonal tiling, represents the fundamental domains of the *3222 orbifold, shown here from three different centers. Its fundamental domain is a Lambert quadrilateral, with 3 right angles. This symmetry can be seen from a [6,4], (*642) triangular symmetry with one mirror removed, constructed as [6,1+,4], (*3222). Removing half of the blue mirrors doubles the domain again into *3322 symmetry.
Related polyhedra and tiling
*n42 symmetry mutation of expanded tilings: n.4.4.4
|
|
64 |
6.6.4.4 |
(3.4.4)2 |
4.3.4.3.3.3 |
6.6.4.4 |
6.4.4.4 |
3.4.4.4.4 | |
(3.4.4)2 |
3.4.4.4.4 |
46 |
See also
Wikimedia Commons has media related to Uniform tiling 4-4-4-6. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch