Snub tetrahexagonal tiling
Snub tetrahexagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.4.3.6 |
Schläfli symbol | sr{6,4} |
Wythoff symbol | | 6 4 2 |
Coxeter diagram | |
Symmetry group | [6,4]+, (642) |
Dual | Order-6-4 floret pentagonal tiling |
Properties | Vertex-transitive Chiral |
In geometry, the snub tetrahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,4}.
Images
Drawn in chiral pairs, with edges missing between black triangles:
Related polyhedra and tiling
The snub tetrahexagonal tiling is fifth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.
Symmetry 4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | ||||
---|---|---|---|---|---|---|---|---|
242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
Snub figures |
||||||||
Config. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ |
Gyro figures |
||||||||
Config. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ |
|
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-3-4-3-6. |
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Sunday, November 02, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.