Trioctagonal tiling

Trioctagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration(3.8)2
Schläfli symbolr{8,3} or \begin{Bmatrix} 8 \\ 3 \end{Bmatrix}
Wythoff symbol2 | 8 3|
3 3 | 4
Coxeter diagram or
Symmetry group[8,3], (*832)
[(4,3,3)], (*433)
DualOrder-8-3 rhombille tiling
PropertiesVertex-transitive edge-transitive

In geometry, the trioctagonal tiling is a semiregular tiling of the hyperbolic plane, representing a rectified Order-3 octagonal tiling. There are two triangles and two octagons alternating on each vertex. It has Schläfli symbol of r{8,3}.

Symmetry


The half symmetry [1+,8,3] = [(4,3,3)] can be shown with alternating two colors of triangles, by Coxeter diagram .

Dual tiling

Related polyhedra and tilings

From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.

It can also be generated from the (4 3 3) hyperbolic tilings:

The trioctagonal tiling can be seen in a sequence of quasiregular polyhedrons and tilings:

See also

Wikimedia Commons has media related to Uniform tiling 3-8-3-8.

References

External links

This article is issued from Wikipedia - version of the Saturday, April 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.