Truncated order-4 heptagonal tiling
Truncated heptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.14.14 |
Schläfli symbol | t{7,4} |
Wythoff symbol | 2 4 | 7 2 7 7 | |
Coxeter diagram | or |
Symmetry group | [7,4], (*742) [7,7], (*772) |
Dual | Order-7 tetrakis square tiling |
Properties | Vertex-transitive |
In geometry, the truncated order-4 heptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{7,4}.
Constructions
There are two uniform constructions of this tiling, first by the [7,4] kaleidoscope, and second by removing the last mirror, [7,4,1+], gives [7,7], (*772).
Name | Tetraheptagonal | Truncated heptahexagonal |
---|---|---|
Image | ||
Symmetry | [7,4] (*742) |
[7,7] = [7,4,1+] (*772) = |
Symbol | t{7,4} | tr{7,7} |
Coxeter diagram |
Symmetry
There is only one simple subgroup [7,7]+, index 2, removing all the mirrors. This symmetry can be doubled to 742 symmetry by adding a bisecting mirror.
Type | Reflectional | Rotational |
---|---|---|
Index | 1 | 2 |
Diagram | ||
Coxeter (orbifold) |
[7,7] = (*772) |
[7,7]+ = (772) |
Related polyhedra and tiling
*n42 symmetry mutation of truncated tilings: 4.2n.2n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *n42 [n,4] |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]... |
*∞42 [∞,4] | ||||
Truncated figures |
|||||||||||
Config. | 4.4.4 | 4.6.6 | 4.8.8 | 4.10.10 | 4.12.12 | 4.14.14 | 4.16.16 | 4.∞.∞ | |||
n-kis figures |
|||||||||||
Config. | V4.4.4 | V4.6.6 | V4.8.8 | V4.10.10 | V4.12.12 | V4.14.14 | V4.16.16 | V4.∞.∞ |
Uniform heptagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
Uniform duals | |||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
Uniform heptaheptagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,7], (*772) | [7,7]+, (772) | ||||||||||
= = |
= = |
= = |
= = |
= = |
= = |
= = |
= = | ||||
{7,7} | t{7,7} |
r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} | ||||
Uniform duals | |||||||||||
V77 | V7.14.14 | V7.7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 4-14-14. |
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Monday, April 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.