Snub hexaoctagonal tiling
Snub hexaoctagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.6.3.8 |
Schläfli symbol | sr{8,6} |
Wythoff symbol | | 8 6 2 |
Coxeter diagram | |
Symmetry group | [8,6]+, (862) |
Dual | Order-8-6 floret pentagonal tiling |
Properties | Vertex-transitive Chiral |
In geometry, the snub hexaoctagonal tiling is a semiregular tiling of the hyperbolic plane. There are three triangles, one hexagon, and one octagon on each vertex. It has Schläfli symbol of sr{8,6}.
Images
Drawn in chiral pairs, with edges missing between black triangles:
Related polyhedra and tilings
From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-6 octagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [8,6] symmetry, and 7 with subsymmetry.
Symmetry: [8,6], (*862) | ||||||
---|---|---|---|---|---|---|
{8,6} | t{8,6} |
r{8,6} | 2t{8,6}=t{6,8} | 2r{8,6}={6,8} | rr{8,6} | tr{8,6} |
Uniform duals | ||||||
V86 | V6.16.16 | V(6.8)2 | V8.12.12 | V68 | V4.6.4.8 | V4.12.16 |
Alternations | ||||||
[1+,8,6] (*466) |
[8+,6] (8*3) |
[8,1+,6] (*4232) |
[8,6+] (6*4) |
[8,6,1+] (*883) |
[(8,6,2+)] (2*43) |
[8,6]+ (862) |
h{8,6} | s{8,6} | hr{8,6} | s{6,8} | h{6,8} | hrr{8,6} | sr{8,6} |
Alternation duals | ||||||
V(4.6)6 | V3.3.8.3.8.3 | V(3.4.4.4)2 | V3.4.3.4.3.6 | V(3.8)8 | V3.45 | V3.3.6.3.8 |
See also
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
Wikimedia Commons has media related to Uniform tiling 3-3-6-3-8. |
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Sunday, November 02, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.