Snub tetraheptagonal tiling

Snub tetraheptagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.3.4.3.7
Schläfli symbolsr{7,4}
Wythoff symbol| 7 4 2
Coxeter diagram
Symmetry group[7,4]+, (742)
DualOrder-7-4 floret pentagonal tiling
PropertiesVertex-transitive Chiral

In geometry, the snub tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Dual tiling

The dual is called a order-7-4 floret pentagonal tiling, defined by face configuration V3.3.4.3.7.

Related polyhedra and tiling

The snub tetraheptagonal tiling is sixth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
Gyro
figures
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.
Uniform heptagonal/square tilings
Symmetry: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
Uniform duals
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77

References

See also

Wikimedia Commons has media related to Uniform tiling 3-3-4-3-7.

External links

This article is issued from Wikipedia - version of the Sunday, November 02, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.