Pentaapeirogonal tiling
pentaapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (5.∞)2 |
Schläfli symbol | r{∞,5} |
Wythoff symbol | 2 | ∞ 5 |
Coxeter diagram | |
Symmetry group | [∞,5], (*∞52) |
Dual | Order-5-infinite rhombille tiling |
Properties | Vertex-transitive edge-transitive |
In geometry, the pentaapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,5}.
Related polyhedra and tiling
*5n2 symmetry mutations of quasiregular tilings: (5.n)2
Symmetry *5n2 [n,5] |
Spherical | Hyperbolic | Paracompact | Noncompact | ||||
---|---|---|---|---|---|---|---|---|
*352 [3,5] |
*452 [4,5] |
*552 [5,5] |
*652 [6,5] |
*752 [7,5] |
*852 [8,5]... |
*∞52 [∞,5] |
[ni,5] | |
Figures | ||||||||
Config. | (5.3)2 | (5.4)2 | (5.5)2 | (5.6)2 | (5.7)2 | (5.8)2 | (5.∞)2 | (5.ni)2 |
Rhombic figures |
||||||||
Config. | V(5.3)2 | V(5.4)2 | V(5.5)2 | V(5.6)2 | V(5.7)2 | V(5.8)2 | V(5.∞)2 | V(5.∞)2 |
See also
Wikimedia Commons has media related to Uniform tiling 5-i-5-i. |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
|
This article is issued from Wikipedia - version of the Monday, November 03, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.